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Abstract 

 This dissertation was written as a part of the MSc in Mobile and Web Computing at 

the International Hellenic University. The aim of this work is to investigate if user’s de-

mographics data and ratings entropy0 scores can have an impact on addressing the cold 

start problem in collaborative filtering. We propose four collaborative movie recom-

mender systems that use ask-to-rate techniques by displaying movies to users for rating. 

 The implementation of the aforementioned systems was done in Python 3.6 program-

ming language, developing four independent scripts that display movies for rating using 

different ask-to-rate techniques: random choice of movies, demographic based, entropy0 

based , mix of demographic and entropy0 based.  

 In the evaluation we have taken into consideration both the accuracy of the predictions 

but also the user effort. The results have shown that there is (almost) a tie for the first 

place between demographic-based and entropy0-based systems both in terms of user pref-

erence score but also in terms of user’s effort (entropy0 based system is only marginally 

better). Furthermore, we can also see that the system with the combination of de-

mographics and entropy0, is slightly better (in terms of user preference score) than the 

basic (random selection), even if the user effort is much higher. Finally, for a future work 

we can use a movie-set with newer movies or a completely different dataset with another 

type of products like electronic devices, books etc. Moreover, a mobile implementation 

can make recommender systems even more useful and also valuable. 

 Last but not least, I would like to thank my supervisor Dr. Christos Tjortjis for all his 

valuable support and guidance that he has given me the past six months. 
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1 Introduction 

 Over the last decade, the rapid growth of technology has led to an enormous amount 

of information enabling even an average internet user to have a wide variety of options. 

Electronic shops like Amazon or E-bay are offering plentitude of products, online news-

papers are publishing numerous articles every day while other websites like Netflix are 

offering thousands of movies to their subscribers. Statistics have also shown that the num-

ber of internet users is growing more and more. More specifically we can see that from 

2000 to 2017 there is a growth of 976 % in the global internet usage [1]. 

 Although technology evolution is making a huge progress, there are several disad-

vantages that should be taken into consideration. Using the search engines in order to find 

something that I would like seem very generic and often has not the desired results. In-

ternet users are facing the problem of information overloading in which it is seems very 

challenging to find and process the most suitable information in order to extract mean-

ingful information and knowledge [2]. It is obvious that utilizing and manipulating useful 

information is proven a very demanding and time-consuming procedure. 

 In order to address this problem, we can use recommender systems which seem an 

effective solution in many cases. In other words, recommender systems are capable of 

processing huge amounts of information in order to help users identify meaningful data 

and knowledge from a wide range of choices. As a result the main goal of these systems 

is to do all the “hard” work which in other conditions would be executed by human be-

ings. 

1.1 Definition of Recommender Systems 

 Recommender systems suggest items based on users past behavior, preferences and 

personal data. Because of the diversity of data, the variety of the information and the wide 

range of products, recommender systems are very essential in order to provide recom-

mendations for products and other items [3]. In other words, a recommender system is a 

software that process large amounts of data in order to produce useful information. Mov-

ies, news or books which are considered by a user as “interesting” can now be presented 

by these systems that can be very helpful especially in cases with a wide range of items. 
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We can define a recommender systems as a system that is capable of gathering, processing 

and suggesting products that might be interesting for a given user. According to [2] a 

recommender system is every system that outputs personalized recommendations or has 

the ability to navigate users in order to find interesting and useful products. 

 Many companies are currently using these systems for commercial reasons. They pro-

vide different types of products such as movies, songs or books which means that recom-

mender systems do not focus on specific type of items but they can be generalized in 

order to operate on a wide range of products. Below we introduce some of the most fa-

mous recommendation engines:  

 Netflix which is a service for video rental and streaming, is considered as one of 

the most well-known paradigms because it helps its viewers to find shows that 

might have not initially chosen.  

 Amazon which is a very popular e-commerce website, suggests items that other 

users have bought based on the item that you have just purchased.  

 LinkedIn which is a social networking website designed for business community, 

makes recommendations for people that you might know, jobs you may like or 

companies and groups that are interested in.  

 Also Hulu which is a streaming video website uses recommender systems is order 

to suggest content that many users may find interesting. 

 

 Recommendations can be optimized if the system can use two different types of input 

data: explicit (raw user input) and implicit (user’s behavior) [5]. For example, when a 

user is rating some movies on Netflix, this means that he offers explicit input to the sys-

tem. Various online communities like MovieFinder or MovieLens for movies and Pan-

dora or Last.fm for music, are trying to collect user opinions, in order to recommend items 

based on this knowledge. However, there are many cases where this type of information 

is not available for the system. Moreover, user experience will become worse in case the 

system will keep using long and demanding questionnaires in order to extract useful in-

formation from user. 

 In order to provide accurate recommendations, systems should be aware of users past 

ratings and tastes. By this way, system should be able to suggest products based on what 

users like in the past or products that other similar (based on ratings) users like. However, 

there are many situations where this kind of knowledge is not available for the new users. 
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In this case systems have to face the cold start problem which is considered a very critical 

problem. In order to overcome this problem, many different approaches have been 

adopted: for example systems are capable of exploiting user’s demographic data in order 

to make recommendations for new users based only on this kind of information [6]. 

1.2 Problem 

 The main problem of collaborative recommender systems is to make suggestions for 

new users who have just started to make use of the system. In this problem, which is 

known as cold start problem, the system has to collect new user information in order to 

be ready for use by the recently entered user. In case the system does not have sufficient 

information about new users, it will be very hard to provide accurate predictions. 

1.3 Purpose 

 The main goal of this thesis is to address the cold start problem of collaborative rec-

ommender systems in the context of suggesting movies to new users. First of all, we will 

examine how user’s demographic data affects their movies preferences and then we are 

going to study efficient methods such as the entropy of ratings based on ask-to-rate tech-

nique. These approaches will be evaluated for their efficiency and accuracy in the Mov-

ieLens 100K dataset. 

1.4 Scope 

 The goal of this study is not to improve the accuracy of collaborative or content based 

filtering as this is not within the scope of this dissertation. In this study, we are going to 

investigate if demographic data or/and entropy of information can effectively address the 

cold start problem. Although there is a wide variety of MovieLens datasets with a lot of 

movies ratings, the majority of them does not include information about demographic 

data. In our study, we will use the demographic data of MovieLens 100K dataset com-

bined with small research conducted by us. 
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1.5 Structure of Dissertation 

 In the first (Introduction) chapter, we give a brief description of the main features of 

the recommendation systems and the challenges that they have to face right now. Then, 

we present the purpose and the scope of this dissertation, and finally we provide a brief 

summary of the next chapters. 

 In the second chapter, we present the core concepts of our Thesis. In other words we 

are trying to describe recommender systems and explain how they work. Furthermore we 

introduce the main categories of recommender systems and also give a description of their 

characteristics and their functionality. 

 In the third chapter, we provide a literature review of the main published work re-

garding the recommendation systems and how they address the cold start problem. In this 

point, the main goal is to critique the respective literature and to identify the main prob-

lematic areas that can be improved. Moreover, we are trying to define the problem we are 

working on and also to connect our study with previous knowledge and suggest any fur-

ther research. More specifically, we are trying to focus on the cold start problem which is 

a big issue for new users in recommender systems. Also we concentrate on the possibility 

of addressing it by using user metadata such as demographic data and proving that this 

kind of information can affect personalized recommendations. Furthermore, we try to 

focus on how ratings entropy and entropy0 can affect the cold start problem.  

 In the fourth chapter, we provide a section with the most important functional and 

non-functional requirements of our proposed system. Moreover, we give a description of 

the design of our proposed recommender system by providing all the related details and 

components. In addition, we present some diagrams and also the logic behind our pro-

posed system. 

 In the fifth chapter, we introduce the implementation of our system by presenting the 

tools and the programming languages that we have used. For the needs of this thesis the 

programming language we have used is Python 3.6, and the development environment is 

PyCharm. Additionally, we present the datasets and all the related knowledge that we 

have extracted from them. In this case, we have used the MovieLens datasets that include 

user’s demographic data thousands of movie ratings. 

 In the final chapter, we evaluate our proposed system, compare it with other systems 

and present the final conclusions of this study. Furthermore, we are also trying to suggest 

future work related to our system. 
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2 Core concepts of Recom-
mender Systems 

 In this chapter, we introduce the basic idea and some of the most important charac-

teristics that are related with recommender systems. Also, we are trying to explain some 

of core concepts that are adopted in our dissertation. 

2.1 Recommender Systems 

 In previous chapters we introduced the problem of information overload in which 

users find it difficult to locate the most suitable information at the right time. The set of  

solutions that have been proposed can be presented in the following figure: 

 

 

 

 

 

 

 

 

 

 

Picture 2.1: The hierarchy of solutions proposed for the information overload problem 

 As we can see in the above figure, the solutions are located between information fil-

tering and information retrieval. Information retrieval systems ask the users to specify the 

type of information that is needed. On the other hand, information filtering systems aim 

to learn the user’s main interests and then filter information taking into consideration 

users’ profiles. 
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 As we mentioned in the previous chapters, recommender systems are used to suggest 

what products to buy, what movies to watch or even who should be your friends on the 

social media. In 1992 Goldberg created the first recommender system in order to address 

the problem of the problem of the numerous emails which were presented in user’s mail-

box. In simple words, this system is a type of collaborative filtering algorithm in which 

users make reviews for the emails they read [7]. Over the last decade the need for precise 

and accurate recommender systems is growing more and more, because there are large 

amounts of data and the demand of personalized recommendations. Universities and com-

panies have developed many techniques because it is proven that recommender systems 

can be very profitable. 

 Recommender systems include two main ingredients: the database and the filtering 

algorithm [8]. All the datasets and the information about users is placed in database. On 

the other hand, the filtering algorithm is divided into two steps: Firstly, the algorithm 

calculates the most similar users or items while in the second step the system is trying to 

make recommendations for the users. All the above can also be seen in the following 

figure: 

 

 

 

 

Picture 2.2: Information filtering in recommender systems 

 Below we present the different recommendation techniques that have been developed 

over the past years: 

 Collaborative filtering: The recommendations are based on the similarity be-

tween users and their ratings. 

 Content-based filtering: The recommendations are based on the similarity be-

tween items. 

 Demographic filtering: In this case, recommendations are based on the user per-

sonal information such as gender, age, occupation, location etc. 

 Social filtering: Recommender systems are based on user’s social networks 

 Hybrid filtering: Combination of the above approaches 
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 It is also worth mentioning that our implementation is based on collaborative filtering. 

In the next sections, we will give a brief description of some of the above techniques 

focusing on the methods that are used in our proposed system. 

2.1.1 Basic concepts for ratings 

 The rating system has a big impact on the design of the recommender algorithms. The 

ratings are usually indicate how much a user likes or dislikes a specific item. There are 

rare cases, where ratings can take continuous values, for example in the Jester recommen-

dation engine the rating values range between -10 and 10. On the other hand, in most 

cases the rating values are in intervals, which means that there is a collection of distinct 

ordered numbers used to indicate whether the user likes or dislikes the item on hand. For 

instance, a 5-star rating system can use the set {-2, -1, 0, 1, 2} where a rating of -2 repre-

sents extreme dislike while a rating of 2 an extreme like. For other implementations we 

may have other distinct values such as {0, 1, 2, 3, 4}, having the same logic as above. 

 The number of the rating values depends on the recommendation system. The most 

common scenarios is to use a 5-star, a 7-star or even a 10-star system rating. In figure 2.3 

we can see an implementation of a 5 star rating system.  

 

Picture 2.3: The picture shows a 5-star ratings system that is also referred as interval ratings sys-

tem 
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Apart from the ratings, the above picture can also show the semantic meaning of the user’s 

interests. This meaning can be different depending on the system: For example, Netflix 

uses a 5-star rating system where 4-stars mean that the user “really liked” the movie, 

while the “middle” 3-star rating means that the user simply “liked” the movie. For that 

reason, Netfilx has two ratings expressing the “dislike”, and three ratings expressing the 

“like”, which is also referred to as unbalanced rating scale. There are other implementa-

tions where the number of ratings is even and the neutral rating is absent, which leads to 

a forced choice rating system.  

 In case of our implementation, we have the Movielens Dataset where there are users 

that give their ratings for different items. Users are people who rate items, while items 

are the movies. Ratings can be explicit which means that users inserted the ratings by 

himself or they can be implicit which means that the ratings were estimated based up on 

the users behavior. In our implementation, we use a five point rating scale with ratings 

ranging from 1 to 5 (1 is the extreme dislike, while 5 is the extreme like).  

 In table below we can see an example of the rating matrix that will be used in our 

implementation: 

 

 Toy Story Men in Black 

User1 1 4 

User2 5 Nan 

User3 Nan 3 

Table 2.1: Example of rating matrix 

The above rating matrix includes the ratings which three users gave for 2 movies. As we 

have mentioned before the ratings are ranging between 1 and 5. Also, the Nan value 

means that either the user have not rated the movie because either he has not seen it or he 

he has seen it, he has not managed to rate it. 
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2.2 Content-Based filtering 

 Over the past years, a lot of research has been carried out in order to address the 

problem of information overload, as we have mentioned above. Several items are com-

pared with items that have already rated by users in order to recommend the most suitable 

items. 

 The difference between information filtering and information retrieval can be located 

in this point: The user is not trying to make a query for information, but the filtering 

system is building a model based on user’s past choices and behavior and then tries to 

recommend the most suitable information to the user. Although there is a difference be-

tween these two concepts, information filtering has adopted several approaches from in-

formation retrieval, as it can be seen in content-based filtering and in collaborative filter-

ing. 

 In content-based filtering, the recommendation is constructed based up on user’s be-

havior. In this technique which is also known as cognitive filtering [10], all the available 

information is used in order to predict its relevance taking into consideration the user’s 

profile. Content-based filtering has many similarities with the relevance feedback of in-

formation retrieval literature [11] in which the query vector is constructed by using the 

relevance of user’s opinions on new documents. In Information Filtering (IF), this modi-

fied query vector can be considered as a profile model that includes keywords and their 

relative importance. Based on this profile, the relevance of new items is calculated by 

measuring the similarity between the query vector and the item feature vector. 

 In their simplest form, these profiles are user defined keywords or rules that represent 

users interests and traits. Usually, users would prefer the system to learn their profiles 

rather than providing it to system by themselves. For that reason, systems have to use 

machine learning techniques where the main idea is to learn to create rules and classify 

newly entered items based up on previous knowledge that has been provided by users. 

Thus, machine learning techniques can be used in order to construct a model that will be 

capable of predicting whether newly introduced products or items are probably going to 

be of interest. The ML techniques used in this case are based on text categorization be-

cause the IF is mainly focused on textual domains [19]. 

 The process of allocating a Boolean value to each pair (dj,ci )∈DxC, where D is a set 

of documents and C is a set of categories. If true is allocated to the pair (dj,ci) there is a 
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tendency to assign the category ci to the document dj. On the other hand, if false is as-

signed to this pair then there is an aversion to assign the category ci to the document dj. 

The aim of this process is to estimate the function F∶DxC →{True,False} which deter-

mines the way that documents should be classified, by defining a new function F':DxC 

→{True,False}. The F' function which is called model, should be similar to F as much as 

possible. 

 One of the most well-known approaches from the Information Retrieval and Text 

Categorization domains is the Rocchio Algorithm which describes documents using the 

vector space representation having as the most important ingredient the TF-IDF weight 

(Term Frequency/Inverse Document Frequency). TF-IDF can be formulated by the fol-

lowing equation: 

𝑡𝑓𝑖𝑑𝑓(𝑡𝑘, 𝑑𝑖) = 𝑡𝑓(𝑡𝑘, 𝑑𝑖)𝑥𝑙𝑜𝑔
𝑁

𝑛𝑘
      (1) 

where N represents how many documents there are in the collection, and nk defines the 

number of documents that involve the token tk. Moreover, tf(tk,di) can be considered as 

the scheme which calculates how many times the token tk appears in document di. 

 Rocchio algorithm calculates 𝑐𝑖 = (𝜔1𝜄, … . , 𝜔|𝛵|𝜄) (where T is the number of the 

unique tokens in the training set), for the 𝑐𝑖 category using the following equation: 

𝜔𝑘𝑖 = 𝛽 ∙ ∑
𝜔𝑘𝑗

𝑃𝑂𝑆𝑖
− 𝛾 ∙ ∑

𝜔𝑘𝑗

𝑁𝐸𝐺𝑖
      (2)

𝑑𝑗 𝜖 𝑁𝐸𝐺𝑖𝑑𝑗 𝜖 𝑃𝑂𝑆𝑖

 

where ωkj represents the tfidf factor of the token tk in the dj document, 〖POS〗i is the 

positive example in the training set for a category ci and 〖NEG〗i is the negative example 

respectively. 

 Moreover β and γ are the factors that set the relative weight of the positive and nega-

tive examples. The vector model enables us to estimate how similar two vectors are taking 

into consideration the correlation. In order to calculate this correlation we can simply 

measure the cosine of the angle between these vectors. The class 𝑐 is assigned to a docu-

ment 𝑑𝑗, by computing the similarity between each vector 𝑐𝑖 and the document 𝑑𝑗
⃗⃗⃗⃗ . The 𝑐 

will eventually be defined by the 𝑐𝑖 that has the highest similarity score. 
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2.3 Collaborative filtering 

 In Collaborative filtering (CF), user similarity is calculated based on user’s ratings 

[9]. The majority of the studies uses this technique because it is easy to implement and 

also it provides satisfactory results. Most of the research is mainly focused on two points: 

The first is how to determine the similarity metric and the second is how to make predic-

tions for items that have no ratings. 

 Collaborative filtering is mainly based on a model that exploits user’s behavior. This 

model can be created by using a single user’s behavior or by using the behavior of a group 

of users that have similar preferences. In other words, this technique makes recommen-

dations based up on the collaboration of many users and focuses on users that have similar 

traits and behavior. 

 There are two main groups of Collaborative filtering algorithms: Memory-based Col-

laborative Filtering and Model-Based collaborative Filtering [12]. In Memory-Based Col-

laborative Filtering, recommendations are made by using the whole or a large part of the 

user dataset. One of the most famous and effective algorithms of this category is User-

Based Collaborative Filtering. One of the most important disadvantages of this algorithm 

is that in order to create recommendations, the system has to process the whole dataset 

which can be proved a very demanding and slow task. On the other hand, model-based 

algorithms utilize datasets in order to create a more concrete model that will be used in 

order to make recommendations. The most famous algorithm in this case is Item-Based 

Collaborative Filtering. Below we are going to introduce the core concepts of the most 

famous memory and model based collaborative filtering algorithms. Furthermore, we will 

introduce kNN algorithm, a well-known data science algorithm that will be used in com-

bination with Collaborative Filtering in our implementation. 

2.3.1 Item – Based Collaborative Filtering (IBCF) 

 Item Based collaborative filtering [13, 14] is a model-based technique which recom-

mends items taking into consideration the relationship of items from the rating matrix. 

The main idea of this technique is that users would choose items which have similarities 

with other items they had already liked in the past. 

 This approach involves the calculation of similarity matrix which has item to item 

similarities based on a similarity measure. Some of the most well-known similarity 

measures are: Cosine Similarity, Pearson Similarity and Adjusted Cosine Similarity. 
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These similarities are located in a matrix S with n rows and n columns. In order to the 

size of the matrix to n * k where k <<n, we only save the k most similar items and their 

corresponding similarity values. The neighborhood of the item i with size k, can be de-

fined by the set S(i) which is translated as the k items that are most similar with the item 

i. Keeping the k most common neighbors simplifies the problem, however it is obvious 

that the quality of recommendation is decreasing. 

 One of the most important parts in item-based recommender systems is to calculate 

item similarities and then to choose only the most similar items. The main idea behind 

the calculation of the similarity between two items i and j is to choose only the users who 

have rated both of these items and then to calculate the similarity sij based on a similarity 

measure technique. The above procedure can be visualized in the following Picture 2.4, 

where there is a matrix with m rows which represent users and n columns that represent 

items. 

 

Picture 2.4: Elicitation of the co-rated items and similarity computation. 

 There three main methods that are used in order to calculate the similarity between 

items. These methods which are described below are: cosine based similarity, correlation 

based similarity, and adjusted cosine similarity. 
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2.3.1.a. Cosine-based similarity 

 In this approach, two items are represented as two vectors in the m dimensional user 

space. We calculate the similarity between these items by measuring the cosine angle of 

their corresponding vectors. Looking at the matrix of Picture 2.3 we calculate the simi-

larity between two items i,j ( sim(i,j) ): 

𝑠𝑖𝑚(𝑖, 𝑗) = cos(𝑖, 𝑗) =
𝑖 ∙ 𝑗

|𝑖| ∗ |𝑗|
      (3) 

where “.” is the dot product 

 

2.3.1.b. Correlation-based similarity 

 In this technique, we calculate similarity between two items i,j by computing the Pear-

son correlation corrij. In order to improve accuracy we have to single out the cases where 

users have rated both items i and j as we have mentioned in Picture 2.3. Defining as U the 

set of users that have rated both items i and j, correlation-based similarity is calculated by 

the following equation: 

𝑠𝑖𝑚(𝑖, 𝑗) =
∑ (𝑅𝑢,𝑖 − 𝑅𝑖̅

̅ )(𝑅𝑢,𝑗 − 𝑅𝑗̅)𝑢∈𝑈

√∑ (𝑅𝑢,𝑖 − 𝑅𝑖̅)2
𝑢∈𝑈 √∑ (𝑅𝑢,𝑗 − 𝑅𝑗̅)2

𝑢∈𝑈

      (4) 

where 𝑅𝑢,𝑖 corresponds to the rating of the user u for the item i, and 𝑅𝑖̅ represents the 

average rating for the i-th item. 

 

2.3.1.c. Adjusted cosine similarity 

 The calculation of similarity between user-based collaborative filtering and item-

based collaborative filtering has some differences. One of the main differences is that in 

user based collaborative filtering, we calculate the similarity between the rows of the rat-

ing matrix while in item based collaborative filtering we calculate the similarity between 

columns of the matrix (each pair of the co-rated items represents a different user). In case 

of item based collaborative filtering, the computation of similarity by the cosine similarity 

technique has one main disadvantage: The variation of the rating scale for different users 

is not taken into consideration. This problem can be addressed by using the adjusted co-

sine similarity where the user average is subtracted by each co rated pair. 

 By using this approach, the similarity between two items i and j is calculated by the 

equation: 
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𝑠𝑖𝑚(𝑖, 𝑗) =
∑ (𝑅𝑢,𝑖 − 𝑅𝑢

̅̅̅̅̅̅̅̅ )(𝑅𝑢,𝑗 − 𝑅𝑢
̅̅̅̅ )𝑢∈𝑈

√∑ (𝑅𝑢,𝑖 − 𝑅𝑢
̅̅̅̅ )2

𝑢∈𝑈 √∑ (𝑅𝑢,𝑗 − 𝑅𝑢
̅̅̅̅ )2

𝑢∈𝑈

      (5) 

where Ru denotes the average rating for user u. 

 

2.3.1.d. Prediction computation 

 The most crucial part of a collaborative filtering system is to generate the desired 

predictions. First of all we try to single out the most similar items taking into considera-

tion the aforementioned similarity measures and then we try to focus on the users’ ratings 

and generate predictions based on the weighted sum approach. 

 In this approach we calculate the prediction for an item i targeting a user u by calcu-

lating the sum of all the ratings the user u has given for items that are similar to the item 

j. The similarity sim(i,j) between items I and j “weights” each one of the ratings. Taking 

into consideration the idea that is depicted in Figure 2.5 we can define the prediction 

P(u,i) using the following equation: 

𝑃𝑢,𝑖 =
∑ (𝑠𝑖,𝑁 ∗ 𝑅𝑢,𝑁)𝑎𝑙𝑙 𝑠𝑖𝑚𝑖𝑙𝑙𝑎𝑟 𝑖𝑡𝑒𝑚𝑠,𝑁

∑ (|𝑠𝑖,𝑁|)𝑎𝑙𝑙 𝑠𝑖𝑚𝑖𝑙𝑙𝑎𝑟 𝑖𝑡𝑒𝑚𝑠,𝑁

      (6) 

The main idea of this technique is that it tries to describe how a user rates similar items. 

Moreover we can see that the sum of similar items scales the weighted sum in order to 

guarantee that the prediction falls within a specified range.  

 

 

Picture 2.5: Item-based collaborative filtering algorithm. Prediction is done by considering 5 

neighbors 
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2.3.2 User – Based Collaborative Filtering (UBCF) 

 User based collaborative filtering is memory based approach that uses and process 

rating data from a wide range of users. The main idea behind this technique is that users 

with the same or almost the same preferences will also give similar ratings in the items. 

For that reason, a user’s missing ratings can be estimated by finding the k-most common 

neighbors and then process their ratings in order to create the final recommendations. 

 

Picture 2.6: User-based collaborative filtering approach. In (a) there is the matrix with all users 

ratings and also the predicted ratings for the target user ua,, where in (b) there is the neighbor-

hood with the most similar users for the target user ua. 

 The neighborhood with the k most common users is calculated by the similarity of 

users, choosing the k most similar users or choosing all users that have a defined similarity 

threshold. For User-based collaborative filtering the most well-known similarity 

measures are person correlation and cosine similarity (both of them where presented in 

the previous paragraph 2.3.1). As we have mentioned before, a user’s N(a) ⊂ U neigh-

borhood can be estimated either by choosing a number of the most similar neighbors or 

by defining a threshold on the similarity. After finding the common neighbors, we aggre-

gate their ratings in order to predict the missing ratings for the target user ua. A simple 

approach is to take the average of the ratings in the neighborhood by using the below 

equation: 

𝑟̂𝑎𝑗 =
1

𝑁(𝑎)
∑ 𝑟𝑖𝑗      (7)

𝑖∈𝑁(𝑎)

 

 In order to exploit the case the fact that some neighbors are more similar to the target 

user than other neighbors, we adopt another approach in which we add weights in equa-

tion (7). As a result we now have: 



-16- 

𝑟̂𝑎𝑗 =
1

∑ 𝑠𝑎𝑖𝑖∈𝑁(𝑎)
∑ 𝑠𝑎𝑖𝑟𝑖𝑗

𝑖∈𝑁(𝑎)

      (8) 

where 𝑠𝑎𝑖 defines the similarity between a neighbor ui and the target user ua. 

 An even better approach is to measure 𝑟̂𝑎𝑗 with distinct ratings. In this case, we have 

the classic user-based collaborative filtering algorithm, in which there is an aggregation 

of the target user’s average rating, considering all the items that the target user has rated. 

This approach can be defined by the following equation: 

 

𝑟̂𝑎𝑗 = 𝑟̅𝑎 +
∑ (𝑟𝑢,𝑗 − 𝑟̅𝑢)𝑃𝑎,𝑢

𝑘
𝑢=1

∑ 𝑃𝑎,𝑢
𝑘
𝑢=1

      (9) 

where: k is the number of the k most similar neighbors for the target user a,  𝑃𝑎,𝑢 denotes 

the similarity between the target user and the other users u, 𝑟̅𝑎 is the average rating for the 

target user a, 𝑟̅𝑢 is the average rating of the neighborhood users for the item j, and 𝑟𝑢,𝑗 is 

the rating that user u gave to item j. 

2.3.3 kNN Algorithm 

 In this point, we will give a short description of the kNN algorithm which is used in 

our implementation. K Nearest Algorithm (known as kNN) is very simple and easy to 

understand and also has an incredibly well performance. Moreover, it is versatile and 

robust classifier and has a wide range of applications. The aim of this algorithm is to 

utilize a dataset where the data points divided into classes, in order to predict in which 

class belongs a new data point.  

 Each of the features of the dataset is considered as a different dimension in space and 

the value of an observation for each of these features is considered as a coordinate, which 

means that we have a collection of points in the dimensional space. Eventually, the simi-

larity of two points can be regarded as the distance between them. 

 In order to make predictions for a new observation the algorithm picks the k most 

similar (closest distance) points to this observation and then chooses the most similar 

class between them. For that reason the algorithm is referred to as k-Nearest Neighbors 

Algorithm. [23] 

 kNN is considered as  a non-parametric and lazy algorithm. It is characterized as non-

parametric because it does not make any assumptions regarding the underlying data dis-
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tribution. This is a big advantage because the majority of the practical data does not usu-

ally follow the typical theoretical assumptions. As a result, non-parametric algorithms 

such as kNN are here to offer the desired solutions. 

 Moreover kNN is a lazy algorithm. In other words, it does not utilize the training data 

sets in order to make generalizations. This means that the explicit training phase is absent 

or is extremely small, which denotes that the training phase is very fast. The absence of 

generalization indicates that kNN maintains all training data which is needed for the test-

ing phase. Contrary to other methods in which you can remove a portion of the dataset, 

lazy algorithms such as kNN utilizes the whole dataset in order to make predictions.  

 In case of kNN, two opposing parts can also be observed: Although the training is 

absent or almost absent, the testing phase is much more expensive regarding memory and 

time. Time is demanded because there are cases in which all data had to participate in 

generating a prediction, while memory is needed when all data must be saved. 

 The algorithm can be briefly described in four steps: 

1. We define a positive integer k, and also a new sample 

2. We choose the k points from our dataset, which are mist similar to the new sam-

ple 

3. We make the classification based up on these points 

4. The aforementioned class is given to our new sample 

 As we have mentioned before, data points are located in a feature space and can be 

considered as scalars or multidimensional vectors. As a result, there is the concept of 

distance between these points, which can be calculated by many ways for example the 

Pearson correlation or simply the Euclidean distance. Furthermore, we take into consid-

eration the integer number k which determines the number of neighbors that defines the 

classification. 

 To conclude, considering that the points are m-dimensional the procedure of finding 

the k-Nearest Neighbors can take O(m) time. Moreover, choosing the value of number k 

is a challenging task: If the value of number k is small the noise will have a big impact 

on the final result. On the other hand, if the value of number k is large, then the algorithm 

becomes more resource demanding. As a result, a compromised solution for this issue is 

to choose the number k based up on the function 𝑘 = 𝑠𝑞𝑟𝑡(𝑛), where n is the number of 

data that are included in the dataset. 
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2.4 Matrix Factorization 

 Until now we have introduced neighborhood methods which are focused on measur-

ing the relationships between items or users. In contrast to these methods, there are also 

the latent factor models where both items and users are characterized on factors which 

are derived from the rating patterns. 

 The implementation of latent factor models is mainly based on matrix factorization 

[22]. The basic functionality of the Matrix Factorization is that it characterizes items and 

users using vectors of factors which are derived from item rating patterns. Recommenda-

tions are generated in case there is high similarity between items and users. These ap-

proaches are becoming more and more popular in recent years because they combine 

scalability and precise recommendations. Furthermore, they are also more flexible be-

cause they are capable of modeling real life scenarios. 

 As we have mentioned in the previous section, recommender systems are based on 

various types of input data. This data is usually located in matrices which have one di-

mension as the items and the other dimension as the users. One of the most suitable type 

of data is the explicit feedback, which includes users’ ratings for products in interest. For 

instance, Netflix gives users the opportunity to rate their preferred movies by giving star 

ratings, while TiVo collects ratings by enabling users to press thumbs up or thumbs down 

buttons if they like or not the movies respectively. The explicit feedback can also be called 

as ratings. It is also worth noting that these ratings are often placed in sparse matrices 

because users have only rated only a small number of the existing movies of the whole 

dataset. 

 One of the main advantages of matrix factorization is that it is capable of enabling the 

integration of additional information. In case explicit feedback is not available, recom-

mender systems can predict user tastes by using implicit feedback. Implicit feedback rep-

resents opinions by taking into consideration users’ behaviors and habits such as: past 

purchases, search history and in some cases the movement of mouse. Furthermore, im-

plicit feedback can be depicted by a dense matrix because it often indicates if there is an 

event or not. 
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2.5 Hybrid Algorithm 

 Hybrid techniques combine multiple recommendation algorithms (e.g. content-based, 

collaborative filtering, etc.) increasing the efficiency and the likelihood to generate more 

precise recommendations as well as the complexity of recommender systems. In order to 

combine these methods many approaches have been proposed. 

 Generated recommendations can be significantly boosted by using a hybrid recom-

mender that utilizes several of the aforementioned methods. A well-known approach is 

the combination of content-based and collaborative filtering. Hybrid recommender sys-

tems may be a smart solution for addressing the cold start problem which is one of the 

most serious problems of recommender systems. Figure 2.7 illustrates the basic idea of 

the generated recommendations for a new introduced user based up on a hybrid recom-

mender which combines social links and collaborative filtering. 

 

Picture 2.7: The main idea behind a hybrid recommender system 
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3 Challenges and related work 

 Recommender systems have been a subject of a vast number of research studies and 

discoveries in order to find new approaches capable of enhancing and improving recom-

mendations. In this chapter we are going to present some of the most important research 

topics over the last years. This analysis is mainly based on papers [15, 16, 17, 18]. More-

over, the majority of the presented work is tightly related with the development and the 

problems that we have faced in our work. To sum up, we will present the cold start prob-

lem, followed by some works that are trying to solve it using various techniques and 

approaches. 

3.1 Cold Start Problem 

 One of the most challenging problems which recommenders systems have to face is 

undoubtedly the limited number of the initially available user data. Under these circum-

stances, it is not easy to apply the aforementioned recommendations techniques and es-

pecially the collaborative filtering method. Although knowledge based or content based 

models proved to be more resistant to cold start problems than collaborative filtering, it 

is not easy to have this knowledge or content always available. Small numbers of data 

has negative effect on the performance of recommender systems by downgrading their 

prediction accuracy to a large extent. For that reason, there is a great interest of research-

ing and studying all the drawbacks of limited data, and also what has to be done in order 

to address this problem.   

 Cold start problem affects recommender systems in terms of new users and new prod-

ucts [20].  Many studies have shown that cold start problem affects all types of recom-

mender systems, but it is also proved that collaborative filtering methods have to face 

bigger problems than content based methods. [5] Below we present the two different cat-

egories of the cold start problem which are related with the new user and the new product 

respectively. 
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3.1.1 New user 

 The cold start problem is related with the issue of the new user when a new user has 

just been introduced himself to the system or when an already existing user has not given 

enough data to the system and as a result the system is not performing with the normal 

way. Having this limitation in user’s data, the system generates inaccurate predictions 

which do not fit with the users preferences. In order to address this problem, many sys-

tems use the ask-to-rate technique where they ask from users to rate some products. For 

example MovieLens asks users to rate movies when they sign up [21]. 

3.1.2 New product 

 The second instance of the cold start problem is related with the issue of the new 

product. This problem arises when a new product is introduced to the system because is 

not related with any user or any of the already existing products. This limitation in data 

is very challenging especially in case of collaborative filtering systems which usually use 

information that describe connections between products and users. On the other hand, 

content based filtering methods are more robust because they classify the items based up 

on its characteristics. [21] 

3.2 Documents addressing the cold start problem 

 Below we present some solutions that have been proposed in the past, by giving a 

description of some of the documents which helped us to create our recommender system.  

3.2.1 Using Demographic Information to Reduce the New User 
Problem in Recommender Systems 

 In [15], the author attempts to build a recommender system based up on the de-

mographics data included in the MovieLens 100K dataset. This dataset which will also 

be used in our work, has various information including 100,000 movies ratings made by 

963 users for 1682 movies. Moreover, the ratings range from 1 –the lowest rating- to 5 –

the highest rating. Additionally, the dataset is created by users’ personal information 

which are were provided when users visited the MovieLens website for the first time. The 

structure of the demographic information is given below: 

user id | age | gender | occupation | zipcode 
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Furthermore, the user ratings in the dataset is given as follows: 

user id | item id | rating | timestamp 

 Dividing the above users into training and testing set, we create a model that has K 

distinct clusters, and we train it, by taking into consideration the users of the training set. 

This model can be considered as a classifier that defines which of the users of the training 

set matches a new introduced user (a user from testing set). Also, this model makes the 

classifications based on the user’s demographic data. The ratings of the new introduced 

user are generated by taking into consideration the rating information which is calculated 

from users who belong to the same cluster.  

 Some indicative rating predictions for users in the testing set are plotted along with 

the actual ratings of the users of training set on some specific movies. These plots are 

shown in picture 3.1: 

 

 

 

 

 

 

 

 

 

 

 

Picture 3.1: This plot depicts the predicted ratings r* along with the actual ratings r, for five 

movies for a male user that is 24 years old, he is technician and his zip code is 85711 

The figure shows that the predicted ratings r* are very close with the actual predictions r. 

However, regarding the final results it was observed that most of the predicted ratings are 

located around 3-4. 

 To sum up, the prediction of ratings for new users assuming that there are not any 

past rating data, cannot guarantee that there is any significant relevance  between the 

number of clusters and the precision of the prediction regarding the MovieLens 100K 
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dataset. Moreover, it seems that there is a connection between demographic data and 

movie ratings, but in order to generate more concrete results there is a need for a greater 

range of demographic data. 

3.2.2 Collaborative Filtering Enhanced By Demographic Correla-
tion 

 In [16], there is an attempt to introduce a specific technique which includes a lot of 

approaches of existing algorithms combing them with demographic data using Mov-

ieLens 100k dataset. The introduced hybrid algorithms called U-Demog and I-Demog, 

are mainly influenced by the User-based and Item-based collaborative filtering respec-

tively. Additionally, the aforementioned algorithms are also enhanced by the user’s de-

mographic data: age, gender, a choice of 21 occupations, and also the zip code for each 

user that gave his ratings. The aforementioned data is used for the calculation of demo-

graphic correlations by taking into consideration the user vector similarities. In other 

words, each user in MovieLens 100k dataset corresponds to a user demographic vector 

that is defined as a vector with 27 features and can be seen in detail in the following table: 

feature # feature contents comments 

1 age <= 18 
 each user belongs to a 

single age group, 

 the corresponding slot 

takes value 1 (true) 

 the rest of the features re-

main 0 (false) 

2 18 < age <= 29 

3 29 < age <= 49 

4 age > 49 

5 male 
 the slot describing the 

user gender is 1 

 the other slot takes a 

value of 0 

6 female 

7-27 occupation 

 a single slot describing 

the user occupation is 1 

 the rest of the slots re-

main 0 

Table 3.2: Description of the user demographic vector 
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 In this point, it is worth mentioning that we will follow the same logic in our imple-

mentation where we are also exploiting user’s demographic data. This procedure is de-

scribed in chapter 4 (requirements and design). 

 The experiments have shown that the performance of the proposed algorithms can be 

much better than the base algorithms, but on the other hand it can also be worse than 

them. This deviation is mainly based on the role of the demographic correlations in the 

process of the prediction generation.  

 As it has also mentioned in the previous section, it was noticed that the demographic 

data from the MovieLens 100K dataset, does not have the adequate information in order 

to generate precise and reliable predictions. However, in case this data is combined with 

other types of filtering, like collaborative filtering, the recommendation procedure can be 

boosted and the final predictions can be more precise and reliable. 

3.2.3 Cold-start Problem in Collaborative Recommender Systems: 
Efficient Methods Based on Ask-to-rate Technique 

 In this document [17], the author is trying to address the cold start problem of a Col-

laborative filtering recommendation method by proposing some variations of the “ask-to-

rate” technique.  

 In order to generate recommendations, the author uses memory based Collaborative 

filtering algorithm which was described in the previous Chapter (Chapter 2). In this point 

we can figure out that this algorithm is mainly based on kNN (k –Nearest Neighbors) 

algorithm. The whole recommendation procedure can be described as follows: 

 First of all, we calculate the similarity between the active user and the other users 

who have rated the item by measuring the Pearson’s correlation. Defining as U 

the set of users that have rated both items i and j, correlation-based similarity is 

calculated by the following equation: 

𝑠𝑖𝑚(𝑖, 𝑗) =
∑ (𝑅𝑢,𝑖−𝑅𝑖̅̅ ̅̅̅ ̅)(𝑅𝑢,𝑗−𝑅𝑗̅̅ ̅)𝑢∈𝑈

√∑ (𝑅𝑢,𝑖−𝑅𝑖̅̅ ̅)2
𝑢∈𝑈 √∑ (𝑅𝑢,𝑗−𝑅𝑗̅̅ ̅)2

𝑢∈𝑈

      (10) 

where 𝑅𝑢,𝑖 corresponds to the rating of the user u for the item i, and 𝑅𝑖̅ represents 

the average rating for the i-th item. 

 Then, the prediction for a target item regarding an active user can be measured by 

the following equation: 
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𝑟̂𝑎𝑗 = 𝑟̅𝑎 +
∑ (𝑟𝑢,𝑗 − 𝑟̅𝑢)𝑃𝑎,𝑢

𝑘
𝑢=1

∑ 𝑃𝑎,𝑢
𝑘
𝑢=1

      (11) 

where: k is the number of the k most similar neighbors for the target user a,  𝑃𝑎,𝑢 

denotes the similarity between the target user and the other users u, 𝑟̅𝑎 is the aver-

age rating for the target user a, 𝑟̅𝑢 is the average rating of the neighborhood users 

for the item j, and 𝑟𝑢,𝑗 is the rating that user u gave to item j. 

 Some of the advantages of Collaborative filtering algorithms are that they are simple 

to implement and relatively easy to understand, and also that new data can be added with-

out any problem. However, the main drawback of these systems is the cold start problem 

when there is a new user to the system.  

 In order to find a solution for the cold start problem, the author proposes the “ask-to-

rate” technique .The main idea of this technique is to present some items to the new user 

and ask for explicit ratings. Then, in the user item matrix, the row with the ratings of the 

new user is not empty anymore and the system is capable of using these ratings in order 

to make recommendations. The above process can also be depicted below: 

 

 

 

 

 

 

 

 

 

Picture 3.2: The main idea behind ask-to-rate technique 

 It is also worth noting that the system must be capable of presenting the most informa-

tive items in order to collect the right information for the new user. If the ratings of the 

new user are originated from a well-designed selection method rather than a “random 

selection”, then there is a great chance of generating much more improved and accurate 

predictions. Normally, these techniques should not be difficult but instead they should be 

understandable and user friendly. An indicative evaluation of the proposed selection tech-

niques on the user effort and the recommendation accuracy can be seen in Table 3.2. 
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Methods User Effort 
Recommendation  

Accuracy 

IGCN  

(Log pop)×Ent  

Entropy0  

HELF  

Popularity  

Item-Item  

Entropy  

Random  

Table 3.2: The evaluation of the proposed selection methods on user effort and on prediction ac-

curacy (5star: Best, 1star: Worst). 

 For our recommender system we have initially taken into consideration the pure en-

tropy method, which is also referred as non-adaptive method. Non-adaptive methods are 

able to present similar items to all new users ignoring the existence of changes in 

knowledge of the user being asked. Pure entropy H( ta ) which is usually characterized by 

low complexity, represents the scattering of the item ratings in the rating matrix. The 

basic structure of entropy’s algorithm can be seen in the following figure 3.3. 

 In this point it is worth mentioning that this method is capable of providing a lot of 

information for each rating. However, this kind of information is not always really useful 

as the system can present some items that are totally unknown to the majority of the users. 
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Function Entropy ( ta )  

{ 

entropy ( ta ) = 0 

for each item ta  in dataset 

{ 

 for i as each of the possible rating values  //in case of MovieLens, i = 1…5 

{   

  if (rating( ta ) == i): 

{ 

 value[i] += 1  //rating frequencies 

} 

 } 

 proportion[i] = value[i]/(total number of users who rate ta ) 

 entropy( ta ) +=  proportion[i]*Math.log(proportion[i],2) 

} 

entropy( ta ) = - entropy( ta ) 

} 

Picture 3.3: Algorithm of pure entropy method 

 The author also examines the Entropy0 method which is the Entropy considering 

missing values. In the previous method (Pure Entropy), missing ratings were nor taken 

into consideration. In order to address the problem of an item without evaluation, the 

method of Entopy0 zero is introduced: All missing ratings belong to a new category re-

ferred as “0” while “1-5” continues to be the normal rating scale as it was before. The 

following equation shows the Entropy0 formulation using a weighted approach:  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦0(𝑎𝑡) = −
1

∑ 𝑤𝑖𝑖
∑ 𝑝𝑖𝑤𝑖 log(𝑝𝑖)       (12)

5

𝑖=0

 

where w0 = 0.5 represents the weight for the missing ratings, and wi = 1 (for i = 1,…5) 

represents the original ratings of the dataset. It is also worth noting that if we change w0 

to 0, the Entropy0 is altered to the Pure Entropy. Entropy0 manages to address some of 

the drawbacks of Pure Entropy, and make a distinction between the unknown items (items 

that have a small number of ratings) and frequently rated items. It is also observed that 

Entropy0 generates better results than Popularity method. 
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3.2.4 Learning Preferences of New Users in Recommender Sys-
tems: An Information Theoretic Approach 

 This paper [18], is trying to address the cold start problem by examining the effec-

tiveness of several item selection methods based on information theory. The basic concept 

of this procedure is to use each of these methods in order to find a set of items, and then 

to evaluate how effective these items are in constructing new users profiles. We also have 

to note that the author is mainly focused on developing methods based on information 

theory, aiming to extract information about new users’ habits and tastes. Similar to the 

previous section, the author also notices that pure entropy has many limitations and as a 

result he proposes some variations: Entropy0 and HELF. The methods used by the author 

are: Popularity, Entropy0 (Entropy Considering Missing Values), HELF (Harmonic mean 

of Entropy and Logarithm of Frequency) and IGCN (Information Gain through Clustered 

Neighbors).  

 Entropy and Entropy0 were presented in the previous section. Regarding the other 3 

methods we have: 

 Popularity shows how frequently the users rate the items, and it is considered a 

very easy and inexpensive technique.  

 HELF which is the Harmonic mean of Entropy and Logarithm of rating Frequency 

can be formulated with the above equation: 

𝐻𝐸𝐿𝐹𝑎𝑖
=

2 ∗ 𝐿𝐹𝑎𝑖

′ ∗ 𝐻′(𝑎𝑖)

𝐿𝐹𝑎𝑖
′ + 𝐻′(𝑎𝑖)

        (13) 

where 𝐿𝐹𝑎𝑖

′  is the normalized algorithm of the rating frequency of 𝑎𝑖: 

lg( ) / lg( )ia U  and 𝐻′(𝑎𝑖) is the normalized entropy of 𝑎𝑖: 𝐻(𝑎𝑖)/lg (5). 

Finally, ICGN which is the Information Gain through Clustered Neighbors, cal-

culates information gain of items. Additionally, the ratings data is selected accord-

ing to the users that match best with the active’s user profile until now. The infor-

mation gain of an item ta  can be calculated by the below function: 

𝐼𝐺(𝑎𝑡) = 𝐻(𝐶) − ∑
|𝐶𝑎𝑟

𝑟 |

|𝐶|
𝑟

𝐻(𝐶𝑎𝑟
𝑟 )        (14) 

where H(X) represents the entropy of a distinct variable X, while C indicates the 

distribution of users into clusters defining the number of users that belong to each 

cluster. 𝐶𝑎𝑟
𝑟  indicates the distribution into classes of those users that have rated the 
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item 𝑎𝑡 with value r. ∑
|𝐶𝑎𝑟

𝑟 |

|𝐶|𝑟 𝐻(𝐶𝑎𝑟
𝑟 ) represents the weighted average of entropies 

of the partitions of the class distribution (C) caused by the ratings of the item 𝑎𝑡. 

 The following figure shows the results of the above methods from the offline simula-

tion: 

 

Picture 3.3: The figure shows how familiar the presented movies are to the users, for each of the 

aforementioned selection methods. 

 It is obvious that popularity method selects the most familiar items to users while 

HELF generates the worst results. Moreover, we can see that Entropy0 is also capable of 

producing some satisfactory results.  

 Then, in figure 3.4 we can see the results regarding the accuracy of recommendations. 

From these results we can see that both IGCN and Entropy0 have a good performance for 

both of the metrics. However, HELF produces some confusing results because regarding 

MAE is one of the worst, while regarding Expected Utility is one of the best.  
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Picture 3.4: The plots show the effectiveness of the generated user’s profiles. (a),(b) present the 

recommendation accuracy of User-based kNN CF algorithm, while (c),(d) present the accuracy 

of Item-based kNN CF algorithm. Mean absolute error (MAE) is better for lower values, and 

Expected Utility is better for higher values  
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4 Requirements and Design 

 In this chapter, we present the functional and non-functional requirements of our im-

plementation, taking into consideration the cold start problem and the overview of the 

system model that is described briefly below: The system asks the new user for explicit 

ratings and then, based on the already existing dataset which has the other users’ ratings, 

generates recommendations for the new user.  

Furthermore, we are going to introduce the design of our proposed system and how is 

it possible to satisfy the aforementioned requirements. We will give a brief description 

about the architecture of the system, the data that we used, the assumptions we made, and 

finally the basic execution flow. 
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4.1 Requirements 

4.1.1 Functional requirements 

 In this section, there will be a brief explanation of the non-functional requirements of 

the user interaction with the software 

FR ID Title Description 

1 Display movies for rating 

The system should provide an in-

terface that presents movies to 

users 

2 
Request users demographic 

data 

The system should provide an in-

terface which asks users to give 

their demographic information 

3 
Display movies for rating 

based on their entropy 

The system should be able to cal-

culate movies entropy, and pre-

sent (for rating) the movies with 

the highest scores of entropy 

4 

Display movies for rating 

based on users’ demo-

graphic data 

The system should be able to 

find the k most common neigh-

bors (based on demographics) 

for the target user, and present 

(for rating) their corresponding 

movies. 

5 Ask user for explicit ratings 

The system should provide an in-

terface that asks users for ex-

plicit ratings 

6 
Generate recommendations 

using collaborative filtering 

The system should be able to 

generate recommendations by 

processing the ratings given by 

the target user and other similar 

user from the existing dataset. 

Table 4.1: Functional requirements of our proposed system 
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4.1.2 Non-Functional requirements 

In this section, there will be a brief explanation of the non-functional requirements of the 

user interaction with the software 

NFR ID Title Description 

1 Accurateness 

The system should provide pre-

cise recommendations which 

correspond to the target user ac-

tual movie preferences 

2 Simple 

The system should provide a 

simple interface that will be un-

derstandable and easy to use. 

3 Interesting 

The system should not be boring 

and should be capable of captur-

ing user’s attention during the 

whole procedure 

4 Fast 

The system should be fast, both 

in terms of producing the recom-

mendations but also in terms of 

collecting user’s ratings and his 

demographic information. 

Table 4.2: General Non-Functional requirements of our proposed system 
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 The software must also be compliant with ISO 9126 quality characteristics 

(http://www.sqa.net/iso9126.html). 

Category Subcategory Description 
Functionality Compliance 

 
The system should minimize in-
trusiveness and be compliant 
with privacy laws 
 

Reliability Maturity The software should face very 
rarely failures 

Fault tolerance Software should be able to 
withstand and recover from 
failures 

Recoverability Ability to bring back a failed 
system to full operation, includ-
ing data 

Usability Understandability Ease of which the software’s 
functions can be understood 

Learnability It should be easy to learn for 
every kind of user (i.e. no tech 
savvy)  

Operability Ability of the software to be 
easily operated by a given user 
in a given environment. 

Efficiency Time Behavior Response time < 5 sec 

Resource behavior Use a little amount of memory 

Portability Adaptability Characterizes the ability of the 
system to change to new speci-
fications or operating environ-
ments.  

Table 4.3: ISO 9126 quality characteristics 

 

 

http://www.sqa.net/iso9126.html


  -37- 

4.2 System architecture 

 The user interacts with the system through an interface that we have developed. The 

interface is capable of displaying movies to user, and also asking for explicit ratings. It is 

also asks for users demographic data and store all this information on the disk. Finally the 

system is capable of generating recommendations based on user’s ratings and his demo-

graphic information. This can be implemented by finding the top k most common neigh-

bors and then using collaborative filtering bias subtracted technique.  

 In order to provide an optimal service to users, the system must be able to generate 

fast and precise recommendations. Furthermore, the ask-to-rate method should be simple 

and not boring, but instead should capture user’s attention throughout the duration of the 

whole procedure of information gathering. 

 The aforementioned functional and non-functional requirements should be satisfied 

by designing a recommender system with various components and operations. Below, we 

provide the key points of its operation: 

 Input: MovieLens 100k Dataset, new user movies ratings and his demographic 

data 

 Output: Generated recommendations based on: 1) select movies for rating ran-

domly, 2) select movies for rating, considering users demographic data, 3) select 

movies for rating, considering their entropy0 score, 4) combination of 2, 3 meth-

ods. 

 Basic steps of the systems functionality: 

1. User starts the system 

2. System loads the MovieLens 100k dataset 

3. Target user gives his demographic data – optional (only in case the algo-

rithm requests user’s demographic data) 

4. System calculates movies entropy – optional (only in case the algorithm 

take into consideration movies entropy) 

5. System displays movies for rating 

6. User rates movies 

7. System generates and displays recommendations 

8. User exits the system 
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 In this point it is worth mentioning that our proposed system consists of four inde-

pendent and different algorithms (scripts): 

1. The first algorithm (basic algorithm) displays movies for rating randomly, and 

then generates recommendations based on collaborative filtering. 

2. The second algorithm (demographic based algorithm) displays movies for rating 

based on users demographic data, and then generates recommendations like the 

basic script. 

3. The third algorithm (entropy0 based algorithm) displays movies for rating based 

their entropy0 scores (movies with the highest entropy0 scores are presented first), 

and then generates recommendations like the basic script. 

4. The fourth algorithm (demographic and entropy0 based algorithm) which is a 

combination of the third and the fourth script, displays movies for rating based on 

users demographics and movies entropy0 scores, and then generates recommen-

dations like the basic script. 

4.2.1 Recommendation engine 

 As we have mentioned above, the recommendation engine is implemented by using 

the kNN algorithm and bias subtracted user based collaborative filtering, and the users 

similarities are calculated by the Pearson correlation scheme. In other words, we will have 

the user-similarity matrix that includes the similarities (Pearson correlation) between us-

ers. Also the recommendations are calculated by taking into account only the top-k most 

similar users (kNN algorithm). Finally, in the collaborative filtering technique we have 

managed to prevent biases related with the users by subtracting each user’s average rating 

from each user’s rating, and then add that average at the end (bias subtracted collaborative 

filtering). 

4.3 Used dataset 

 For this project we have used the MovieLens 100k dataset as we have already men-

tioned in previous chapters. This dataset, was developed by GroupLens Research Project 

and contains 1682 movies with 100.000 ratings on the rating scale 1-5 provided by 943 

users. Moreover, it is based on explicit information given by users during their sign-up on 

MovieLens website. It is also worth mentioning that every user included in the dataset 

has rated at least 20 movies.  
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 The MovieLens dataset contains a lot of files, however for our implementation we 

have singled out and used the following files: 

 u.user: This file contains demographic data about users. This information has the 

following format: 

user id | age | gender | occupation | zipcode. 

From the above structure, the zipcode feature was removed because it is not 

needed for our project. Below we present the first 3 users of the u.user file: 

user id age gender occupation 

1 24 M Technician 

2 53 F Other 

3 23 M Writer 

Table 4.4: A sample containing the first 3 rows of the u.user file 

The users are classified based on their demographic data by converting the above features 

(age, gender and occupation) to numeric scales in order to estimate their similarity. As a 

result we have: 

a) Age is represented within the ranges: 0-18, 19-24, 25-30, 31-40, 41-50, 

51-60, 61-70, 71-100. So for a 24 year old user, we have value 1 for the 

19-24 age range and 0s for the other ranges. 

b) Gender is specified by 0 and 1 

c) Occupation is also specified by 0s and 1 

Combining the above features we develop the below model: 

 age = ['18', '24', '30', '40', '50', '61', '70', '100'] 

 gender = ['M', 'F'] 

 occupation = ['administrator', 'artist', 'doctor', 'educator', 'engineer', 'enter-

tainer', 'executive', 'healthcare', 'homemaker', 'lawyer', 'librarian', 'market-

ing', 'none', 'other', 'programmer', 'retired', 'salesman', 'scientist', 'student', 

'technician', 'writer'] 

 combined_features = ['18|0', '24|1', '30|2', '40|3', '50|4', '60|5', '70|6', '100|7', 

'm|8', 'f|9', 'administrator|10', 'artist|11', 'doctor|12', 'educator|13', 'engi-

neer|14', 'entertainer|15', 'executive|16', 'healthcare|17', 'homemaker|18', 
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'lawyer|19', 'librarian|20', 'marketing|21', 'none|22', 'other|23', 'program-

mer|24', 'retired|25', 'salesman|26', 'scientist|27', 'student|28', 'techni-

cian|29', 'writer|30'] 

Applying the same logic as the author of 3.2.2 in chapter 3, the above data is used for the 

calculation of demographic correlations by taking into consideration the user vector sim-

ilarities. The user demographic vector is defined as a vector with 31 features and can be 

seen in detail in the following table: 

feature # feature contents comments 

0 age <= 18 

 each user belongs to a single 

age group, 

 the corresponding slot takes 

value 1 (true) 

 the rest of the features re-

main 0 (false) 

1 18 < age <= 24 

2 24 < age <= 30 

3 30 < age <= 40 

4 40 < age <= 50 

5 50 < age <= 60 

6 60 < age <= 70 

7 70 < age <= 100 

8 Male 
 the slot describing the user 

gender is 1 

 the other slot takes a value 

of 0 
9 Female 

10-30 occupation 

 a single slot describing the 

user occupation is 1 

 the rest of the slots remain 0 

Table 4.5: Description of the user demographic vector 

 

For example, considering the first user of the table 4.4 (24 year old, Male technician) 

we can see that the corresponding combined_features list contains the below values: 

[0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 
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 u.data: This is our main dataset that includes 100000 ratings for 1682 movies 

given by 943 users. Information is formatted on a table with four columns (user 

id, movie id, rating, timestamp). Users are numbered consecutively from 1 to 943 

and every use rid is unique for each user. Moreover the same logic applies for 

movies (movie id ranges from 1 to 1682). Also as we have mentioned before, 

ratings range from 1 to 5. Finally the timestamps are unix seconds since 1/1/1970 

UTC, but in our implementation we will not take them into consideration. Below  

we give a small sample of the first 5 rows of this dataset where we have omitted 

the timestamp column as we mentioned before: 

user id movie id rating value 

196 242 3 

186 302 3 

22 377 1 

244 51 2 

166 346 1 

Table 4.6: A sample containing the first 5 rows of the u.data file 

 

 u.item: Finally, this file includes the metadata for our movies. More specifically it 

is formatted as a table with rows where each row corresponds to a movie. Also the 

table has 23 columns where: the 1st column is the movie id, the 2nd is the movie 

title, the 3rd is the release date of the movie, the 4th is the imdb link for this movie, 

and the remaining columns corresponds to the movie genres. All the possible gen-

res can be: | unknown | Action | Adventure | Animation |Children's | Comedy | 

Crime | Documentary | Drama | Fantasy |Film-Noir | Horror | Musical | Mystery | 

Romance | Sci-Fi |Thriller | War | Western |. A 1 indicates the movie is of that 

genre, while a 0 indicates it is not. Also movies can be in several genres at once. 

It is also worth noting that the movie ids are the ones that are used in the u.data 

dataset. For our implementation we care only about the titles, as a result we keep 

only the first two columns (movie id and movie title). Below we give a small 

sample of the first 5 rows of this dataset: 
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movie id movie title 

1 Toy Story (1995) 

2 GoldenEye (1995) 

3 Four Rooms (1995) 

4 Get Shorty (1995) 

5 Copycat (1995) 

Table 4.7: A sample containing the first 5 rows of the u.item file 
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4.4 Assumptions 

 For the sake of simplicity, and in order to overcome various problems, we are going 

to make some assumptions that are applied within the constraints of our project. The as-

sumptions are described as follows: 

 The u.item dataset which contains metadata about movies, remains stable and does 

not change from the start till the end of our implementation. In other words, there 

are not new movies that are added, or there are not movies characteristics that are 

altered. 

 The u.users dataset that contains user’s demographic information does not change. 

This means that neither new users are added nor existing users demographic data 

changes throughout the whole procedure of our implementation. Even if a new 

user is introduced to the system, his demographic data is saved only temporarily. 

 The same logic is also applied for the u.data dataset, as all the including infor-

mation (users’ movies ratings) does not change. Similarly, in case a new user en-

ters the system, his movies ratings are only saved temporarily and are discarded 

when the user exits the system. 

 There is always a fixed number of movies displayed to target user for rating. 

 The number of recommended movies is also fixed. 

 Each algorithm (script) provides recommendations when user has rated 10 mov-

ies. 

4.5 Flowchart diagrams 

 The following sections provide a brief description of the functions of the four algo-

rithms that were discussed in 4.2: Basic algorithm, Demographics based algorithm, En-

tropy0 based algorithm and Demographics-Entropy0 based algorithm. Moreover we in-

troduce the procedure of inserting user’s demographics and providing ratings for movies. 
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4.5.1 Basic algorithm flowchart diagram 

 In this section we introduce the flowchart of the basic algorithm which only uses col-

laborative filtering. Movies are displayed for rating randomly without using a specific 

approach. 

 

Picture 4.1 Basic algorithm 
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4.5.2 User Demographics based algorithm flowchart diagram 

 In this section we introduce the flowchart of the user demographics based algorithm 

which displays movies for rating based on users’ demographic data and uses collaborative 

filtering for recommendations. 

 

Picture 4.2: User Demographics based algorithm 
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Below we present a screenshot of how the system asks user to insert his demographic 

data: 

 

Picture 4.3: System asks target user to insert his age, gender and occupation 



  -47- 

4.5.3 Movies Entropy0 based algorithm flowchart diagram 

 In this section we introduce the flowchart of the movies entropy0 based algorithm 

which displays movies for rating based on their entropy0 scores and uses collaborative 

filtering for recommendations. 

 

Picture 4.4: Movies Entropy0 based algorithm 
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4.5.4 User Demographics and movies entropy0 based algorithm 
flowchart diagram 

 In this section we introduce the flowchart of the user demographics and movies en-

tropy0 based algorithm which displays movies for rating based on users’ demographics 

and movies entropy0 scores and uses collaborative filtering for recommendations. 

 

Picture 4.5: Users demographics and Movies Entropy0 based algorithm 
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4.5.5 Movies rating function flowchart diagram 

 In this point we provide the flowchart diagram for the movie rating procedure. User 

starts the system and the system displays movies for rating. User either choses a movie 

for rating or presses -1 to load a new movielist. If he has rated 10 movies, the system 

provides recommendations by using collaborative filtering. On the other hand, if he has 

rated less than 10 movies the user either changes the movielist or keeps the already exist-

ing movielist. 

 

Picture 4.6: Movies rating function 
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Below we present an example of how movies are displayed by the system to the target 

user for rating: 

 

Picture 4.7: Movies displayed to user for rating 
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4.5.6 Inserting target user demographics 

 In the following flowchart we describe how user inserts his demographic data. First 

of all he inserts his age, then he inserts his gender and finally he enters his occupation. 

Finally the system uses the kNN algorithm to find user’s top k most common neighbors 

based on demographics 

 

Picture 4.8: Insert users demographics function
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5 Implementation 

5.1 Basic parts of our implementation 

 As we have already mentioned in the previous chapter, we developed four different 

scripts: basic, demographic-based, entropy0-based and demographic & entropy0-based. 

The aforementioned scripts were developed in Python (version 3.6) language using the 

PyCharm development environment. Furthermore in order to manage some important Py-

thon packages we have used the Anaconda package manager. Below we are going to give 

a brief description of the main functions of the four scripts: 

5.1.1 Functions of the Basic script 

 readFullDataset(dataSetFilePath): This function reads the full dataset (u.data) 

which contains the 100000 ratings. It takes one argument (dataSetFilePath) of type 

string, which is the path of the u.data file and finally returns the full dataset as 

Pandas dataframe with the following names as columns: 'user_id', 'item_id', 'rat-

ing', 'timestamp' 

 

 readMovieSet(movieSetFilePath): This function reads the movie dataset (u.item) 

which contains information about movies. It takes one argument (movieSet-

FilePath) of type string, which is the path of the u.item file and finally returns the 

movie dataset as Pandas dataframe with the following names as columns: 

'item_id', 'title' 

 

 insertNewUserRatings(ids_titles, fullDataSet, newUserID, timestamp, 

known_positives, mySelMovies): This function displays movies to the new user 

and asks for explicit ratings. It takes 6 arguments: ids_titles from the 

 readMovieSet(movieSetFilePath) function, fullDataSet from the readFullDa-

taset(dataSetFilePath) function, the newUserID, a random timestamp, and 

known_positives, mySelMovies are both Python lists. Finally returns the full da-

taset that includes the new user with his ratings. 
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 numberOfUsers(fullDataSet): This function returns the number of users in the da-

taset. It takes the full dataset as an argument. 

 

 numberOfMovies(fullDataSet): This function returns the number of movies in the 

dataset. It takes the full dataset as an argument. 

 

 getUserItemMatrix(n_users, n_items, fullDataSet): This function returns the user-

item matrix. It takes the number of users, the number of movies and also the full 

dataset as arguments. 

 

 calculateUsersPearsonCorrelation(user_item_matrixTrain): This function re-

turns a matrix with the users Pearson correlation based on their ratings. It takes 

the user-item matrix as an argument. 

 

 predict_Top_K_no_Bias(ratings, similarity, k=40): This function returns a 

numpy array with the predictions for each user (kNN Collaborative filtering-bias 

subtracted). It takes the user-item matrix, the matrix with Users Pearson Correla-

tion and a number for the kNN algorithm (default is 40) as arguments. 

 

 printPredictedMoviesUserBased(user, n): This function prints the top–n recom-

mended movies for a given user id. It takes the user id and the number of recom-

mended movies as arguments. 

5.1.2 Functions of the Demographic-based script 

 _read_raw_data(path): This function reads the demographic data of the existing 

users. It takes one argument (path) of type string, which is the path of the zip file 

that contains all the datasets and finally returns the demographic data. 

 

 createUserMetaDataList (users_raw, users_age, users_occup, user_meta_raw): 

This function asks the new user for his demographic data (age, gender and occu-

pation) and then append this data to the previous dataset with the users de-

mographics. It takes 4 lists as arguments: the first 3 lists are from the demograhic 

model that we have created, and the 4th list is demographics of the dataset. 
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 _parse_user_metadata (num_users, user_meta_raw, users_combined_features): 

This function transforms users demographics list (with the new user) into a list 

with zeros and ones and return this list. It takes as arguments the number of users, 

the demographics of all users (including the new user), and the user’s combined 

features from the demographic model. 

 

 euclideanDistance(instance1, instance2, length): This function calculates and re-

turns the Euclidean distance of two instances (instance 1 and instance 2). 

 

 getNeighbors(trainingSet, testInstance, k): This function calculates and returns 

the k most common neighbors of a specified testInstance from a given dataset. 

 

 readFullDataset(dataSetFilePath): The same as Basic script. 

 

 readMovieSet(movieSetFilePath): The same as Basic script. 

 

 insertNewUserRatings(ids_titles, fullDataSet, newUserID, timestamp, 

known_positives, mySelMovies, neighborsmovies): The same as Basic script, tak-

ing into consideration the most common neighbors movies. 

 

 numberOfUsers(fullDataSet): The same as Basic script 

 

 numberOfMovies(fullDataSet): The same as Basic script 

 

 getUserItemMatrixDemographicsBased(n_users, n_items, fullDataSet, neigh-

bors) The same as the getUserItemMatrix of the Basic script, taking into consid-

eration only the common neighbors. 

 

 getUserItemMatrix(n_users, n_items, fullDataSet): The same as Basic script 

 

 calculateUsersPearsonCorrelation(user_item_matrixTrain): The same as Basic 

script 

 

 predict_Top_K_no_Bias(ratings, similarity, k=40): The same as Basic script 

 

 printPredictedMoviesUserBased(user, n): The same as Basic script 
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5.1.3 Functions of the Entropy0-based script 

 readFullDataset(dataSetFilePath): The same as Basic script. 

 

 readMovieSet(movieSetFilePath): The same as Basic script. 

 

 insertNewUserRatings(ids_titles, fullDataSet, newUserID, timestamp, 

known_positives, mySelMovies, entropy_indexes): The same as Basic script tak-

ing into consideration movies entropy (entropy_indexes). 

 

 numberOfUsers(fullDataSet): The same as Basic script 

 

 numberOfMovies(fullDataSet): The same as Basic script 

 

 calcMoviesEntropy0(fullDataSet, n_users, n_items, neighbors): This function 

calculates and returns the entropy0 values of the full dataset. It takes as arguments 

the full dataset and the number of users and movies. 

 

 getUserItemMatrix(n_users, n_items, fullDataSet): The same as Basic script 

 

 calculateUsersPearsonCorrelation(user_item_matrixTrain): The same as Basic 

script 

 

 predict_Top_K_no_Bias(ratings, similarity, k=40): The same as Basic script 

 

 printPredictedMoviesUserBased(user, n): The same as Basic script 
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5.1.4 Functions of the Demographic & Entropy0-based script 

 _read_raw_data(path): The same as Demographic based script. 

 

 createUserMetaDataList (users_raw, users_age, users_occup, user_meta_raw): 

The same as Demographic based script. 

 

 _parse_user_metadata(num_users, user_meta_raw, users_combined_features): 
The same as Demographic based script. 

 

 euclideanDistance(instance1, instance2, length): This function calculates and re-

turns the Euclidean distance of two instances (instance 1 and instance 2). 

 

 getNeighbors(trainingSet, testInstance, k): This function calculates and returns 

the k most common neighbors of a specified testInstance from a given dataset. 

 

 readFullDataset(dataSetFilePath): The same as Basic script. 

 

 readMovieSet(movieSetFilePath): The same as Basic script. 

 

 insertNewUserRatings(ids_titles, fullDataSet, newUserID, timestamp, 

known_positives, mySelMovies, entropy_indexes): The same as Basic script 

 

 numberOfUsers(fullDataSet): The same as Basic script 

 

 numberOfMovies(fullDataSet): The same as Basic script 

 

 calcMoviesEntropy0(fullDataSet, n_users, n_items, neighbors): The same as En-

tropy0 based script. 

 

 getUserItemMatrix(n_users, n_items, fullDataSet): The same as Basic script 

 

 calculateUsersPearsonCorrelation(user_item_matrixTrain): The same as Basic 

script 

 

 predict_Top_K_no_Bias(ratings, similarity, k=40): The same as Basic script 

 

 printPredictedMoviesUserBased(user, n): The same as Basic script 
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5.2 Basic flow of each script 

 Below we are going to present and highlight the most important points of the basic 

flow of each script. The corresponding scripts can be seen in detail in the Appendix 

(source code section).  

5.2.1 Basic script 

 Lines 198-201: The system initializes the new user and also some lists. 

 Lines 203-206: The system reads the full dataset and the full movieset, 

 Lines 209-213: The system displays movies and asks for explicit ratings., then it 

calculates the number of users and movies 

 Line 216: The system creates the user item matrix taking into consideration the 

new user. 

 Line 219: The system calculates users similarity by Pearson correlation 

 Line 222: The system generates predictions for users 

 Line 238: The system prints the top 10 recommended movies for the new user 

5.2.2 Demographic-based script 

 Lines 369-372: The system initializes the new user and also some lists. 

 Line 375: The system fetch the users demographic data 

 Lines 378-392: The system creates the model for the demographic based system 

by creating some lists 

 Line 395: The system asks for the demographic data of new user and appends it 

to the list with the demographics of existing users. 

 Lines 397-400: The system reads the full dataset and the full movieset 

 Line 404: The system creates a list with zeros and ones that corresponds to users 

demographic data including the new user 

 Line 406: The system creates a list with zeros and ones that corresponds to users 

demographic data without the new user 

 Line 408: The system creates a list with zeros and ones that corresponds only to 

new user demographic data. 

 Line 411: The system finds the 20 most common neighbors of the new user, tak-

ing into consideration users demographics. 

 Lines 413-415: The system calculates the number of users and movies 
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 Line 417: The system returns all the rated movies of the 20 most common users 

based on demographics 

 Lines 421: The system displays movies and asks for explicit ratings, taking into 

consideration only the movies of the 20 most common users. 

 Lines 424-425: The system calculates again the number of users and movies 

 Line 428: The system creates the user item matrix taking into consideration the 

new user. 

 Line 431: The system calculates users similarity by Pearson correlation 

 Line 434: The system generates predictions for users 

 Line 450: The system prints the top 10 recommended movies for the new user 

5.2.3 Entropy0-based script 

 Lines 253-256: The system initializes the new user and also some lists. 

 Lines 258-261: The system reads the full dataset and the full movieset. 

 Line 263-265: The system calculates the number of users and movies 

 Line 267: The system calculate movies ratings entropy0 values and return mov-

ies indexes starting from the highest entropy0 values to the lowest 

 Lines 271: The system displays movies and asks for explicit ratings, considering 

movies entropy0 values. 

 Line 273-275: The system re-calculates the number of users and movies. 

 Line 278: The system creates the user item matrix taking into consideration the 

new user. 

 Line 281: The system calculates users similarity by Pearson correlation 

 Line 284: The system generates predictions for users 

 Line 300: The system prints the top 10 recommended movies for the new user 

5.2.4 Demographic & Entropy0-based script 

 Lines 408-411: The system initializes the new user and also some lists. 

 Line 414: The system fetch the users demographic data 

 Lines 417-431: The system creates the model for the demographic based system 

by creating some lists 

 Line 433: The system asks for the demographic data of new user and appends it 

to the list with the demographics of existing users. 
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 Line 437: The system creates a list with zeros and ones that corresponds to users 

demographic data including the new user 

 Line 439: The system creates a list with zeros and ones that corresponds to users 

demographic data without the new user 

 Line 441: The system creates a list with zeros and ones that corresponds only to 

new user demographic data. 

 Line 444: The system finds the 20 most common neighbors of the new user, tak-

ing into consideration users demographics. 

 Lines 446-449: The system reads the full dataset and the full movieset. 

 Lines 451-453: The system calculates the number of users and movies 

 Line 457: The system calculates movies ratings entropy0 values taking into con-

sideration the ratings of the 20 most common neighbors, and returns the corre-

sponding movies indexes from the highest to the lowest. 

 Lines 460: The system displays movies and asks for explicit ratings, taking into 

consideration the movies indexes of the previous line 

 Line 462-464: The system calculates the number of users and movies 

 Line 467: The system creates the user item matrix taking into consideration the 

new user. 

 Line 470: The system calculates users similarity by Pearson correlation 

 Line 473: The system generates predictions for users 

 Line 489: The system prints the top 10 recommended movies for the new user 
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6 Evaluation and future work 

6.1 Results and evaluation 

 In this part, we proceed in the evaluation of our system: We have tested each of the 

four scripts on 25 different users. 10 of them were female and 15 were male with their 

age ranging from 20-60. 

 In order to remove bias from the evaluation, we do not disclose in which of the four 

scripts each predicted movieset corresponds to. For that reason, we modified the printPre-

dictedMoviesUserBased(), function of each script by commenting out the last line and 

adding another line that saves the predicted movieset in excel format. As a result, the 

modified function will be: 

 

Picture 6.1: Modified version of the printPredictedMoviesUserBased() function 

As we can see from the above figure, the blue arrow indicates the added line of code that 

writes the predicted movieset into an excel file, while the red arrow indicates the com-

mented code. By this way, the program hides the predicted movieset and the user is com-

pletely unaware of which predicted movieset corresponds to each of the 4 scripts. 

 The evaluation process is presented as follows: First of all, every user have to execute 

each of the four scripts (systems). Then, the four predicted moviesets are shown to the 

user: The A set corresponds to the demographic-based script, the B set corresponds to the 

entropy0-based script, the C set corresponds to the basic script and finally the D set cor-

responds to the demographic & entropy0 based script, however the user is not aware of 

that matching in order to remove bias as we have mentioned before. Finally, the users 

have to rank their most preferred to least preferred movieset by declaring his preferences. 
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For example: Firstly I choose movieset B, secondly I choose movieset A, then I choose 

movieset D and finally I choose movieset C. The first preference is awarded with four 

points, the second with 3, the third with 2 and the final with 1 point. By this way we can 

get the required preference scores for each of the 4 scripts in order to complete the eval-

uation. 

 In order to calculate the final scores of the evaluation for each script, we created an 

excel file with all the required information. This can be seen below: 

 

User info User preference scores for each system User effort time (min.) 

Age Gender Occupation A B C D A B C D 

27 F Student 4 3 2 1 6 4 9 15 

55 F Technician 2 4 1 3 3 3 9 16 

54 M Technician 4 2 3 1 3 4 9 15 

30 M Scientist 3 4 1 2 4 3 7 10 

20 F Artist 4 3 2 1 5 4 8 12 

22 M Student 1 3 4 2 4 4 9 13 

25 F Programmer 4 2 3 1 4 5 8 11 

30 M Engineer 3 4 1 2 5 6 7 16 

31 M Doctor 1 4 2 3 3 3 9 17 

18 M Student 4 3 1 2 4 6 7 13 

62 F Retired 4 1 2 3 6 4 7 12 

65 M Retired 1 4 3 2 6 3 8 15 

38 M Programmer 3 4 2 1 5 5 6 15 

31 F Lawyer 2 1 3 4 3 4 8 14 

27 M Salesman 3 4 2 1 4 3 7 14 

26 M Healthcare 3 4 1 2 7 4 9 16 

28 F Educator 3 4 1 2 5 6 9 17 

27 M Marketing 2 4 3 1 6 5 7 11 

25 M Salesman 4 2 1 3 7 3 8 18 

24 F Educator 3 2 1 4 3 3 9 12 

29 M Engineer 1 4 2 3 7 4 8 14 

33 M Programmer 4 2 3 1 3 5 6 12 

35 F Homemaker 2 4 3 1 3 6 6 13 

25 M Technician 3 4 1 2 4 3 7 17 

21 F Artist 4 1 2 3 6 4 9 17 

SUM 72 77 50 51 116 104 196 355 

AVG 3,13 3,34 2,17 2,21 5,04 4,52 8,52 15,43 

Table 6.1: Evaluation table containing user demographics, the preference scores for every script 

and also the effort time to complete each script 
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 As we can see, demographic-based and entropy0 based systems are topping the list of 

most preferred systems. Entropy0 based is in the first position with average preference 

score 3,34, while demographic based comes second with 3,13. Surprisingly, the demo-

graphic and entropy0 based system is in the third position with 2,21 average preference 

score, while the basic system (random selection) is the last with 2,17.  

 In terms of user effort time, entropy0 based system is again the first with 4,52 minutes 

average user effort time, demographic based is second with 5,04 minutes, basic system is 

third with 8,52 minutes while demographics and entropy0 based system is the last with 

15,43 minutes (double than that of basic). 

 Finally, excluding the system that combines demographics and entropy0, we compare 

and contrast entropy0 based and demographic based systems with the basic system. As a 

result we have the following table: 

 Demographics based Entropy0 based Basic 

SUM 72 77 50 

Percentage 36,18% 38,69% 25,12% 

Table 6.2: Comparing the best two systems with the basic in terms of user preference score 

6.2 Conclusions 

 Taking into consideration the above evaluations, we conclude that ratings entropy0 

values as well as users demographics can play an important role in addressing cold start 

problem on collaborative filtering systems. Users tend to prefer entropy0 based systems, 

while demographics based systems rank second with small difference from the first. Sur-

prisingly, the system that combines both demographics and entropy0 is in the third place 

with almost the same user preference score as the basic system that offers random selec-

tion.  

 More specifically, the entropy0 based system not only is first in terms of user prefer-

ence scores, but also requires less user effort than the other three systems. The average 

user effort for entropy0 based system is 4,5 minutes while demographics based system 

requires 5 minutes on average. Users seemed happy as both of the aforementioned sys-

tems and especially entropy0 based displayed movies that were known to them. Moreo-

ver, they were a little concerned about the demographic based system because it displayed 

for rating only a small portion of the total available movies of the dataset. Furthermore, 

the system that combines both demographics and entropy0 values, is in the last position 
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because it mostly displays unknown movies, so the users have to make a great effort in 

order to complete this test. 

 To sum up, we can see that entropy0 based system is in the first place both in terms 

of users preference scores and also in terms of effort time. This can also be depicted better 

if we see the tables 6.1 and 6.2 where entropy0 based system is better than the basic by 

13% while it requires much less user effort (the average user effort for entropy0 based is 

4,5  minutes while for the basic is 8,5 minutes). By this way, we have significantly im-

proved the collaborative movie recommender system both in terms of user preference 

scores and also in user effort time. 

6.3 Future work 

 As we have seen from the evaluation part, the majority of users were complaining that 

many movies were old and completely unknown to them. As a result, in a future work 

there a need to use newer dataset with more known movies. Furthermore, except from the 

release year, the movie-set should be enhanced with more demographic features such as 

income level, marital status, number of children, religion etc. By this way we can better 

understand how much demographics affect recommender systems.  

 Another idea for future research is to use completely different datasets that include 

other kind of products such as music, books, electronic devices and more (this can be 

achieved by using Amazon datasets). 

 Finally, another addition that will surely attract a lot of attention is to develop recom-

mender systems for mobile devices. As we can see, in the past 10 years there is a rapid 

growth of mobile devices and more and more people are using smartphones and tablets. 

As a result, there is a need to develop recommender systems that fit in these mobile de-

vices. The main idea is that the user will send all the required data from his mobile device 

using an easy and friendly graphical user interface. Then the recommendation engine run-

ning on a powerful server will receive and process the user input, generate recommenda-

tion and send it back to user’s device. By this way the user will be able to see the predic-

tions through a simple and friendly interface of his mobile device. 
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Appendix 

Source Code 
 

basic.py 

1    import numpy as np  

2    import pandas as pd  

3    from sklearn.metrics.pairwise import pairwise_distances  

4    from random import randint  

5      

6      

7    

######################################################################

##################################################  

8    #We read in the u.data file, which contains the full dataset.  

9    def readFullDataset(dataSetFilePath):  

10       header = ['user_id', 'item_id', 'rating', 'timestamp']  

11       return pd.read_csv(dataSetFilePath, sep='\t', names=header)  

12   #----------------------------------------------------------------

------------------------------------------------------#  

13     

14     

15   

######################################################################

##################################################  

16   #we read the the movies titles from the movie dataset  

17   def readMovieSet(movieSetFilePath):  

18       df_ids_titles = pd.read_csv(movieSetFilePath, sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'],usecols=[0, 

1])  

19       ids_titles = np.empty(1682, dtype=np.object)  

20       for line in df_ids_titles.itertuples():  

21           ids_titles[line[0]] = line[2]  

22       return ids_titles  

23   #----------------------------------------------------------------

------------------------------------------------------#  

24     

25     

26   

######################################################################

##################################################  

27   #insert new user by creating gui in python console  

28   def insertNewUserRatings(ids_titles, fullDataSet, newUserID, 

timestamp, known_positives, mySelMovies):  

29       i=0  

30       j=20  

31       f=0  

32       while(f < 10):  

33           userList = []  

34           for x in range(i,j):  

35               userList.append({x%20+1: ids_titles[randint(0, 

1681)]})  
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36           print('\n')  

37           for p in userList:  

38               print(p)  

39           print('\n')  

40           while(True):  

41               try:  

42                   var = int(input("Choose a movie, or press -1 to 

change movieset: "))  

43               except ValueError:  

44                   print("Wrong input, please insert an integer")  

45                   continue  

46               if((var<-1 or var>20) and var ==0):  

47                   print("Value must be -1 OR between 1 and 20. 

Please insert a valid integer")  

48                   continue  

49               if(1<=var and 20>=var):  

50                   selMovie = str(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  

51                   if selMovie in mySelMovies:  

52                       print("You have already selected that movie, 

please choose another movie")  

53                       continue  

54                   mySelMovies.append(str(ids_titles.tolist().in-

dex(userList[var-1][var])+1))  

55               break  

56           if (var == -1):  

57               if ((1681 - j) >= 20):  

58                   i = j  

59                   j += 20  

60               elif ((1681 - j) > 0):  

61                   i = j  

62                   j = 1682  

63               else:  

64                   i = 0  

65                   j = 20  

66               continue  

67           else:  

68               print('\n')  

69               print("You selected the movie: " + userList[var-

1][var] + " with ID: " + str(ids_titles.tolist().index(userList[var-

1][var])+1))  

70               print('\n')  

71               while (True):  

72                   try:  

73                       rating = int(input("Rate the movie: "))  

74                   except ValueError:  

75                       print("Wrong input, please insert an inte-

ger")  

76                       continue  

77                   if (rating < 1 or rating > 5):  

78                       print("Value must be between 1 and 5. Please 

insert a valid integer")  

79                       continue  

80                   break  

81               known_positives.append(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  

82               fullDataSet.loc[len(fullDataSet)] = [newUserID, 

ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

83               f = f + 1  

84               while(f < 10):  
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85                   while (True):  

86                       try:  

87                           ch = int(input("To change the movieset 

press -1, to keep press 1: "))  

88                       except ValueError:  

89                           print("Wrong input, please insert an in-

teger")  

90                           continue  

91                       if (ch != 1 and ch != -1):  

92                           print("Value must be 1 or -1. Please in-

sert a valid integer")  

93                           continue  

94                       break  

95                   if(int(ch) == -1):  

96                       break  

97                   else:  

98                       print('\n')  

99                       for p in userList:  

100                          print(p)  

101                      print('\n')  

102                      while (True):  

103                          try:  

104                              var = int(input("Choose a movie: "))  

105                          except ValueError:  

106                              print("Wrong input, please insert an 

integer")  

107                              continue  

108                          if ((var < -1 or var > 20)):  

109                              print("Value must be between 1 and 

20. Please insert a valid integer")  

110                              continue  

111                          selMovie = str(ids_titles.tolist().in-

dex(userList[var - 1][var]) + 1)  

112                          if selMovie in mySelMovies:  

113                              print("You have already selected that 

movie, please choose another movie")  

114                              continue  

115                          mySelMovies.append(str(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1))  

116                          break  

117                      print('\n')  

118                      print("You selected the movie: " + us-

erList[var - 1][var] + " with ID: " + str(  

119                          ids_titles.tolist().index(userList[var - 

1][var]) + 1))  

120                      print('\n')  

121                      while (True):  

122                          try:  

123                              rating = int(input("Rate the movie: 

"))  

124                          except ValueError:  

125                              print("Wrong input, please insert an 

integer")  

126                              continue  

127                          if (rating < 1 or rating > 5):  

128                              print("Value must be between 1 and 5. 

Please insert a valid integer")  

129                              continue  

130                          break  

131                      known_positives.append(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1)  
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132                      fullDataSet.loc[len(fullDataSet)] = [newUse-

rID, ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

133                      f = f + 1  

134              if((1681-j) >= 20):  

135                  i = j  

136                  j += 20  

137              elif((1681-j) > 0):  

138                  i = j  

139                  j = 1682  

140              else:  

141                  i = 0  

142                  j = 20  

143          print('\n')  

144      return fullDataSet  

145  #----------------------------------------------------------------

------------------------------------------------------#  

146    

147    

148  

######################################################################

##################################################  

149  #we count the number of unique users and movies.  

150  def numberOfUsers(fullDataSet):  

151      n_users = fullDataSet.user_id.unique().shape[0]  

152      return n_users  

153    

154  def numberOfMovies(fullDataSet):  

155      n_items = fullDataSet.item_id.unique().shape[0]  

156      return n_items  

157  #----------------------------------------------------------------

------------------------------------------------------#  

158    

159    

160  

######################################################################

##################################################  

161  #we create user-item matrix  

162  def getUserItemMatrix(n_users, n_items, fullDataSet):  

163      user_item_matrix = np.zeros((n_users, n_items))  

164      for line in fullDataSet.itertuples():  

165          user_item_matrix[line[1] - 1, line[2] - 1] = line[3]  

166      return user_item_matrix  

167  #----------------------------------------------------------------

------------------------------------------------------#  

168    

169    

170  

######################################################################

##################################################  

171  #we use the pairwise_distances function from sklearn to calculate 

the pearson correlation  

172  def calculateUsersPearsonCorrelation(user_item_matrixTrain):  

173      user_similarityPearson = 1 - pairwise_distances(user_item_ma-

trixTrain, metric='correlation') #943*943  

174      user_similarityPearson[np.isnan(user_similarityPearson)] = 0  

175      return user_similarityPearson  

176  #----------------------------------------------------------------

------------------------------------------------------#  

177    

178    
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179  

######################################################################

##################################################  

180  #make predictions combining Top-K neigbors and Bias-subtracted 

collaborative filtering  

181  def predict_Top_K_no_Bias(ratings, similarity, k=40):  

182      pred = np.zeros(ratings.shape)  

183      user_bias = ratings.mean(axis=1)  

184      ratings = (ratings - user_bias[:, np.newaxis]).copy()  

185      for i in range(ratings.shape[0]):  

186          top_K_users = [np.argsort(similarity[:,i])[:-k-1:-1]]  

187          for j in range(ratings.shape[1]):  

188              pred[i,j] = similarity[i, :][top_K_users].dot(rat-

ings[:, j][top_K_users])  

189              pred[i,j] /= np.sum(np.abs(similarity[i, :][top_K_us-

ers]))  

190      pred += user_bias[:, np.newaxis]  

191      return pred  

192  #----------------------------------------------------------------

------------------------------------------------------#  

193    

194    

195  

######################################################################

##################################################  

196  ##############################################BASIC 

SCRIPT##############################################################  

197    

198  newUserID = 944  # new user's id  

199  timestamp = '883446543'  # random timestamp, we dont care about 

that  

200  known_positives = []  

201  mySelMovies = []  

202    

203  #read the movieset  

204  ids_titles = readMovieSet('u.item')  

205  #read the full dataset  

206  fullDataSet = readFullDataset('u.data')  

207    

208  #insert new user  

209  fullDataSetNewUser = insertNewUserRatings(ids_titles, fullDa-

taSet, newUserID, timestamp, known_positives, mySelMovies)  

210    

211  #calculate number of users and items  

212  n_users = numberOfUsers(fullDataSetNewUser)  

213  n_items = numberOfMovies(fullDataSetNewUser)  

214    

215  #calculate user item matrix  

216  user_item_matrix = getUserItemMatrix(n_users, n_items, fullDa-

taSetNewUser)  

217    

218  #calculate user similarity(Pearson correlation)  

219  user_similarityPearson = calculateUsersPearsonCorrela-

tion(user_item_matrix)  

220    

221  #apply bias subtracted user-based collaborative filtering with 

Top-40 most common neigbors algorithm  

222  user_prediction_User = predict_Top_K_no_Bias(user_item_matrix, 

user_similarityPearson, k=40)  

223    
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224  #function for printing the top n recommended movies for a given 

user id -  

225  def printPredictedMoviesUserBased(user, n):  

226      user = user - 1  

227      n = n - 1  

228      pred_indexes = [i + 1 for i in np.argsort(-user_predic-

tion_User[user])]  

229      pred_indexes = [item for item in pred_indexes if item not in 

known_positives]  

230      movies_ids_titles = pd.read_csv('u.item', sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'], 

usecols=[0, 1])  

231      pd_pred_indexes = pd.DataFrame(pred_indexes, columns=['item-

Id'])  

232      pred_movies = pd.merge(pd_pred_indexes, movies_ids_titles, 

on='itemId')  

233      print('\n')  

234      print("*******************user-based collaborative filtering 

(Top-K neigbors and Bias-subtracted)*******************************")  

235      print(pred_movies.loc[:n])  

236    

237  #print the top 10 recommended movies for the new User (id = 944)  

238  printPredictedMoviesUserBased(944, 10)  
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demographic-based.py 

1    import zipfile  

2    from numpy import array  

3    import numpy as np  

4    import pandas as pd  

5    from sklearn.metrics.pairwise import pairwise_distances  

6    import math  

7      

8      

9      

10   

######################################################################

##################################################  

11   #fetch demographic data  

12   def _read_raw_data(path):  

13       with zipfile.ZipFile(path) as datafile:  

14           return datafile.read('ml-100k/u.user').decode(errors='ig-

nore').split('\n')  

15   #----------------------------------------------------------------

------------------------------------------------------#  

16     

17     

18   

######################################################################

##################################################  

19   # create the user_meta-data list  

20   def createUserMetaDataList(users_raw, users_age, users_occup, 

user_meta_raw):  

21       # first create the user_meta-data list by the existing da-

taset  

22       for line in users_raw:  

23           if not line:  

24               continue  

25           #print(line)  

26           splt = line.split('|')  

27           # Zero-based indexing  

28           userid = int(splt[0])  

29           age = int(splt[1])  

30           gender = splt[2]  

31           occup = splt[3]  

32           i = 0  

33           for m in users_age:  

34               if(age <= int(m)):  

35                   #print(i)  

36                   break  

37               else:  

38                   i = i + 1  

39     

40           if(gender == 'M'):  

41               j = 8  

42           else:  

43               j = 9  

44           k = 10  

45           for n in users_occup:  

46               if(occup == n):  

47                   #print(k)  

48                   break  

49               else:  

50                   k = k + 1  

51           s = str(userid) + "|"  

52           for l in range(0,31):  
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53              if(l == i or l == j or l == k):  

54                  s = s + "1|"  

55              else:  

56                  s = s + "0|"  

57           s = s[:-1]  

58           user_meta_raw.append(s)  

59       #then, append the new user to the above user_meta_data list  

60       while (True):  

61           try:  

62               print('Select your age range:\n', '1. <=18\n', '2. 

19-24\n', '3. 25-30\n', '4. 31-40\n', '5. 41-50\n',  

63                     '6. 51-60\n', '7. 61-70\n', '8. 71-100\n')  

64               newage = int(input("Choose the corresponding number: 

"))  

65           except ValueError:  

66               print("Wrong input, please insert an integer")  

67               continue  

68           if (newage < 1 or newage > 8):  

69               print("Value must be between 1 and 8. Please insert a 

valid integer")  

70               continue  

71           if (1 <= newage and 8 >= newage):  

72               newage = (newage) - 1  

73           break  

74     

75       while (True):  

76           try:  

77               print('Select your gender:\n', '1. Male\n', '2. Fe-

male\n')  

78               newgend = int(input("Choose the corresponding number: 

"))  

79           except ValueError:  

80               print("Wrong input, please insert an integer")  

81               continue  

82           if (newgend < 1 or newgend > 2):  

83               print("Value must be 1 or 2. Please insert a valid 

integer")  

84               continue  

85           if (1 == newgend or 2 == newgend):  

86               newgend = (newgend) - 1 + 8  

87           break  

88     

89       while (True):  

90           try:  

91               print('Select your occupation:\n', '1. administra-

tor\n', '2. artist\n', '3. doctor\n', '4. educator\n',  

92                     '5. engineer\n', '6. entertainer\n',  

93                     '7. executive\n', '8. healthcare\n', '9. home-

maker\n', '10. lawyer\n', '11. librarian\n',  

94                     '12. marketing\n', '13. none\n', '14. other\n',  

95                     '15. programmer\n', '16. retired\n', '17. 

salesman\n', '18. scientist\n', '19. student\n',  

96                     '20. technician\n', '21. writer\n')  

97               newoccup = int(input("Choose the corresponding num-

ber: "))  

98           except ValueError:  

99               print("Wrong input, please insert an integer")  

100              continue  

101          if (newoccup < 1 or newoccup > 21):  

102              print("Value must be between 1 and 21. Please insert 

a valid integer")  



  -75- 

103              continue  

104          if (1 <= newoccup and 21 >= newoccup):  

105              newoccup = (newoccup) - 1 + 10  

106          break  

107    

108      s = str(944) + "|"  

109      for l in range(0, 31):  

110          if (l == newage or l == newgend or l == newoccup):  

111              s = s + "1|"  

112          else:  

113              s = s + "0|"  

114      s = s[:-1]  

115      user_meta_raw.append(s)  

116      return user_meta_raw  

117  #----------------------------------------------------------------

------------------------------------------------------#  

118    

119    

120  

######################################################################

##################################################  

121  #transform users metadata to a list with zeros and ones  

122  def _parse_user_metadata(num_users, user_meta_raw, users_com-

bined_features):  

123      user_features = np.zeros((num_users, len(users_combined_fea-

tures)))  

124      for meta in user_meta_raw:  

125          if not meta:  

126              continue  

127          splt = meta.split('|')  

128          # Zero-based indexing  

129          iid = int(splt[0]) - 1  

130          item_meta = [idx for idx, val in  

131                       enumerate(splt[1:])  

132                       if int(val) > 0]  

133          for gid in item_meta:  

134              user_features[iid, gid] = 1.0  

135      return user_features  

136  #----------------------------------------------------------------

------------------------------------------------------#  

137    

138    

139  

######################################################################

##################################################  

140  #calculate the euclidean distance of users and then find the 

k(k=20) most common neigbors based on demographics  

141  def euclideanDistance(instance1, instance2, length):  

142      distance = 0  

143      for x in range(length):  

144          distance += pow((instance1[x] - instance2[x]), 2)  

145      return math.sqrt(distance)  

146    

147  def getNeighbors(trainingSet, testInstance, k):  

148      distances = []  

149      length = len(testInstance)  

150      for x in range(len(trainingSet)):  

151          dist = euclideanDistance(testInstance, trainingSet[x], 

length)  

152          distances.append(dist)  

153      a = array(distances)  
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154      sorted_indexes = np.argsort(a)  

155      index_neighbors = sorted_indexes[:k]  

156      return index_neighbors  

157  #----------------------------------------------------------------

------------------------------------------------------#  

158    

159    

160  

######################################################################

##################################################  

161  #We read in the u.data file, which contains the full dataset.  

162  def readFullDataset(dataSetFilePath):  

163      header = ['user_id', 'item_id', 'rating', 'timestamp']  

164      return pd.read_csv(dataSetFilePath, sep='\t', names=header)  

165  #----------------------------------------------------------------

------------------------------------------------------#  

166    

167    

168  

######################################################################

##################################################  

169  #we read the the movies titles from the movie dataset  

170  def readMovieSet(movieSetFilePath):  

171      df_ids_titles = pd.read_csv(movieSetFilePath, sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'],usecols=[0, 

1])  

172      ids_titles = np.empty(1682, dtype=np.object)  

173      for line in df_ids_titles.itertuples():  

174          ids_titles[line[0]] = line[2]  

175      return ids_titles  

176  #----------------------------------------------------------------

------------------------------------------------------#  

177    

178    

179  

######################################################################

##################################################  

180  #we count the number of unique users and movies.  

181  def numberOfUsers(fullDataSet):  

182      n_users = fullDataSet.user_id.unique().shape[0]  

183      return n_users  

184    

185  def numberOfMovies(fullDataSet):  

186      n_items = fullDataSet.item_id.unique().shape[0]  

187      return n_items  

188  #----------------------------------------------------------------

------------------------------------------------------#  

189    

190    

191  

######################################################################

##################################################  

192  #we create user-item matrix with the k most common users based on 

demographics  

193  def getUserItemMatrixDemographicsBased(n_users, n_items, fullDa-

taSet, neighbors):  

194      user_item_matrixTrain = np.zeros((n_users, n_items))  

195      for line in fullDataSet.itertuples():  

196          if line[1] - 1 in neighbors:  

197              user_item_matrixTrain[line[1] - 1, line[2] - 1] = 

line[3]  
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198      neighborsmovies = []  

199      for i in range(0, n_items):  

200          for u in neighbors:  

201              if ((user_item_matrixTrain[u, i] == 5) and (i not in 

neighborsmovies)):  

202                  neighborsmovies.append(i)  

203      return neighborsmovies  

204    

205  #----------------------------------------------------------------

------------------------------------------------------#  

206    

207    

208  

######################################################################

##################################################  

209  #insert new user by creating gui in python console  

210  def insertNewUserRatings(ids_titles, fullDataSet, newUserID, 

timestamp, known_positives, mySelMovies, neighborsmovies):  

211      i=0  

212      j=20  

213      f=0  

214      while(f < 10):  

215          userList = []  

216          for x in range(i,j):  

217              userList.append({x%20+1: ids_titles[neighborsmov-

ies[x]]})  

218          print('\n')  

219          for p in userList:  

220              print(p)  

221          print('\n')  

222          while(True):  

223              try:  

224                  var = int(input("Choose a movie, or press -1 to 

change movieset: "))  

225              except ValueError:  

226                  print("Wrong input, please insert an integer")  

227                  continue  

228              if((var<-1 or var>20) and var ==0):  

229                  print("Value must be -1 OR between 1 and 20. 

Please insert a valid integer")  

230                  continue  

231              if(1<=var and 20>=var):  

232                  selMovie = str(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  

233                  if selMovie in mySelMovies:  

234                      print("You have already selected that movie, 

please choose another movie")  

235                      continue  

236                  mySelMovies.append(str(ids_titles.tolist().in-

dex(userList[var-1][var])+1))  

237              break  

238          if (var == -1):  

239              if ((len(neighborsmovies)-1 - j) >= 20):  

240                  i = j  

241                  j += 20  

242              elif ((len(neighborsmovies)-1 - j) > 0):  

243                  i = j  

244                  j = len(neighborsmovies)-1  

245              else:  

246                  i = 0  

247                  j = 20  
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248              continue  

249          else:  

250              print('\n')  

251              print("You selected the movie: " + userList[var-

1][var] + " with ID: " + str(ids_titles.tolist().index(userList[var-

1][var])+1))  

252              print('\n')  

253              while (True):  

254                  try:  

255                      rating = int(input("Rate the movie: "))  

256                  except ValueError:  

257                      print("Wrong input, please insert an inte-

ger")  

258                      continue  

259                  if (rating < 1 or rating > 5):  

260                      print("Value must be between 1 and 5. Please 

insert a valid integer")  

261                      continue  

262                  break  

263              known_positives.append(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  

264              fullDataSet.loc[len(fullDataSet)] = [newUserID, 

ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

265              f = f + 1  

266              while(f < 10):  

267                  while (True):  

268                      try:  

269                          ch = int(input("To change the movieset 

press -1, to keep press 1: "))  

270                      except ValueError:  

271                          print("Wrong input, please insert an in-

teger")  

272                          continue  

273                      if (ch != 1 and ch != -1):  

274                          print("Value must be 1 or -1. Please in-

sert a valid integer")  

275                          continue  

276                      break  

277                  if(int(ch) == -1):  

278                      break  

279                  else:  

280                      print('\n')  

281                      for p in userList:  

282                          print(p)  

283                      print('\n')  

284                      while (True):  

285                          try:  

286                              var = int(input("Choose a movie: "))  

287                          except ValueError:  

288                              print("Wrong input, please insert an 

integer")  

289                              continue  

290                          if ((var < -1 or var > 20)):  

291                              print("Value must be between 1 and 

20. Please insert a valid integer")  

292                              continue  

293                          selMovie = str(ids_titles.tolist().in-

dex(userList[var - 1][var]) + 1)  

294                          if selMovie in mySelMovies:  
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295                              print("You have already selected that 

movie, please choose another movie")  

296                              continue  

297                          mySelMovies.append(str(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1))  

298                          break  

299                      print('\n')  

300                      print("You selected the movie: " + us-

erList[var - 1][var] + " with ID: " + str(  

301                          ids_titles.tolist().index(userList[var - 

1][var]) + 1))  

302                      print('\n')  

303                      while (True):  

304                          try:  

305                              rating = int(input("Rate the movie: 

"))  

306                          except ValueError:  

307                              print("Wrong input, please insert an 

integer")  

308                              continue  

309                          if (rating < 1 or rating > 5):  

310                              print("Value must be between 1 and 5. 

Please insert a valid integer")  

311                              continue  

312                          break  

313                      known_positives.append(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1)  

314                      fullDataSet.loc[len(fullDataSet)] = [newUse-

rID, ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

315                      f = f + 1  

316              if((len(neighborsmovies)-1-j) >= 20):  

317                  i = j  

318                  j += 20  

319              elif((len(neighborsmovies)-1-j) > 0):  

320                  i = j  

321                  j = len(neighborsmovies)-1  

322              else:  

323                  i = 0  

324                  j = 20  

325          print('\n')  

326      return fullDataSet  

327  #----------------------------------------------------------------

------------------------------------------------------#  

328    

329    

330  

######################################################################

##################################################  

331  #we create user-item matrix  

332  def getUserItemMatrix(n_users, n_items, fullDataSet):  

333      user_item_matrix = np.zeros((n_users, n_items))  

334      for line in fullDataSet.itertuples():  

335          user_item_matrix[line[1] - 1, line[2] - 1] = line[3]  

336      return user_item_matrix  

337  #----------------------------------------------------------------

------------------------------------------------------#  

338    

339    
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340  

######################################################################

##################################################  

341  #we use the pairwise_distances function from sklearn to calculate 

the pearson correlation  

342  def calculateUsersPearsonCorrelation(user_item_matrixTrain):  

343      user_similarityPearson = 1 - pairwise_distances(user_item_ma-

trixTrain, metric='correlation') #943*943  

344      user_similarityPearson[np.isnan(user_similarityPearson)] = 0  

345      return user_similarityPearson  

346  #----------------------------------------------------------------

------------------------------------------------------#  

347    

348    

349  

######################################################################

##################################################  

350  #make predictions combining Top-K neigbors and Bias-subtracted 

collaborative filtering  

351  def predict_Top_K_no_Bias(ratings, similarity, k=40):  

352      pred = np.zeros(ratings.shape)  

353      user_bias = ratings.mean(axis=1)  

354      ratings = (ratings - user_bias[:, np.newaxis]).copy()  

355      for i in range(ratings.shape[0]):  

356          top_K_users = [np.argsort(similarity[:,i])[:-k-1:-1]]  

357          for j in range(ratings.shape[1]):  

358              pred[i,j] = similarity[i, :][top_K_users].dot(rat-

ings[:, j][top_K_users])  

359              pred[i,j] /= np.sum(np.abs(similarity[i, :][top_K_us-

ers]))  

360      pred += user_bias[:, np.newaxis]  

361      return pred  

362  #----------------------------------------------------------------

------------------------------------------------------#  

363    

364    

365    

366  

######################################################################

##################################################  

367  ##############################################BASIC 

SCRIPT##############################################################  

368    

369  newUserID = 944  # new user's id  

370  timestamp = '883446543'  # random timestamp, we dont care about 

that  

371  known_positives = []  

372  mySelMovies = []  

373    

374    

375  #fetch dempgraphic data  

376  users_raw = _read_raw_data("C:/Users/Sak/lightfm_data/mov-

ielens100k/movielens.zip")  

377    

378  #create models  

379  users_age = ['18', '24', '30', '40', '50', '61', '70', '100']  

380  users_occup = ['administrator', 'artist', 'doctor', 'educator',  

381                                    'engineer', 'entertainer', 'ex-

ecutive', 'healthcare', 'homemaker',  

382                                    'lawyer', 'librarian', 'market-

ing', 'none', 'other', 'programmer',  
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383                                    'retired', 'salesman', 'scien-

tist', 'student', 'technician',  

384                                    'writer']  

385    

386  users_combined_features = ['18|0', '24|1', '30|2', '40|3', 

'50|4', '61|5', '70|6',  

387                                    '100|7', 'm|8', 'f|9', 'admin-

istrator|10', 'artist|11', 'doctor|12', 'educator|13',  

388                                    'engineer|14', 'enter-

tainer|15', 'executive|16', 'healthcare|17', 'homemaker|18',  

389                                    'lawyer|19', 'librarian|20', 

'marketing|21', 'none|22', 'other|23', 'programmer|24',  

390                                    'retired|25', 'salesman|26', 

'scientist|27', 'student|28', 'technician|29',  

391                                    'writer|30']  

392    

393  user_meta_raw = []  

394    

395  user_meta_raw = createUserMetaDataList(users_raw, users_age, us-

ers_occup, user_meta_raw)  

396    

397  #read the movieset  

398  ids_titles = readMovieSet('u.item')  

399  #read the full dataset  

400  fullDataSet = readFullDataset('u.data')  

401    

402    

403  #users demographic data with new user  

404  usr_feat = _parse_user_metadata(944, user_meta_raw, users_com-

bined_features)  

405  #users demographic data without the new user  

406  usr_feat_no_newUser = np.delete(usr_feat, (943), axis=0)  

407  #new user demographic data  

408  new_usr_feat = usr_feat[-1]  

409    

410  ##The 20 most common neighbors for the new user based on de-

mographics are:  

411  neighbors = getNeighbors(usr_feat_no_newUser, new_usr_feat, 10)  

412    

413  #calculate number of users and items  

414  n_users = numberOfUsers(fullDataSet)  

415  n_items = numberOfMovies(fullDataSet)  

416    

417  #neigbors movies the k most common users based on demographics  

418  neighborsMovies = getUserItemMatrixDemographicsBased(n_users, 

n_items, fullDataSet, neighbors)  

419    

420  #full dataset with new users ratings  

421  fullDataSetNewUser = insertNewUserRatings(ids_titles, fullDa-

taSet, newUserID, timestamp, known_positives, mySelMovies, neigh-

borsMovies)  

422    

423  #calculate number of users and items  

424  n_users = numberOfUsers(fullDataSetNewUser)  

425  n_items = numberOfMovies(fullDataSetNewUser)  

426    

427  #calculate user item matrix with new dataset  

428  user_item_matrix = getUserItemMatrix(n_users, n_items, fullDa-

taSetNewUser)  

429    

430  #calculate user similarity(Pearson correlation)  
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431  user_similarityPearson = calculateUsersPearsonCorrela-

tion(user_item_matrix)  

432    

433  #apply bias subtracted user-based collaborative filtering with 

Top-40 most common neigbors algorithm  

434  user_prediction_User = predict_Top_K_no_Bias(user_item_matrix, 

user_similarityPearson, k=40)  

435    

436  #function for printing the top n recommended movies for a given 

user id -  

437  def printPredictedMoviesUserBased(user, n):  

438      user = user - 1  

439      n = n - 1  

440      pred_indexes = [i + 1 for i in np.argsort(-user_predic-

tion_User[user])]  

441      pred_indexes = [item for item in pred_indexes if item not in 

known_positives]  

442      movies_ids_titles = pd.read_csv('u.item', sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'], 

usecols=[0, 1])  

443      pd_pred_indexes = pd.DataFrame(pred_indexes, columns=['item-

Id'])  

444      pred_movies = pd.merge(pd_pred_indexes, movies_ids_titles, 

on='itemId')  

445      print('\n')  

446      print("*******************user-based collaborative filtering 

(Top-K neigbors and Bias-subtracted)*******************************")  

447      print(pred_movies.loc[:n])  

448    

449  #print the top 10 recommended movies for the new User (id = 944)  

450  printPredictedMoviesUserBased(944, 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  -83- 

entropy0-based.py 

1    import numpy as np  

2    import pandas as pd  

3    from sklearn.metrics.pairwise import pairwise_distances  

4    import math  

5      

6      

7      

8    

######################################################################

##################################################  

9    #We read in the u.data file, which contains the full dataset.  

10   def readFullDataset(dataSetFilePath):  

11       header = ['user_id', 'item_id', 'rating', 'timestamp']  

12       return pd.read_csv(dataSetFilePath, sep='\t', names=header)  

13   #----------------------------------------------------------------

------------------------------------------------------#  

14     

15     

16   

######################################################################

##################################################  

17   #we read the the movies titles from the movie dataset  

18   def readMovieSet(movieSetFilePath):  

19       df_ids_titles = pd.read_csv(movieSetFilePath, sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'],usecols=[0, 

1])  

20       ids_titles = np.empty(1682, dtype=np.object)  

21       for line in df_ids_titles.itertuples():  

22           ids_titles[line[0]] = line[2]  

23       return ids_titles  

24   #----------------------------------------------------------------

------------------------------------------------------#  

25     

26     

27   

######################################################################

##################################################  

28   #we count the number of unique users and movies.  

29   def numberOfUsers(fullDataSet):  

30       n_users = fullDataSet.user_id.unique().shape[0]  

31       return n_users  

32     

33   def numberOfMovies(fullDataSet):  

34       n_items = fullDataSet.item_id.unique().shape[0]  

35       return n_items  

36   #----------------------------------------------------------------

------------------------------------------------------#  

37     

38     

39   

######################################################################

##################################################  

40   #calculate existing movies entropy0 values  

41   def calcMoviesEntropy0(fullDataSet, n_users, n_items):  

42     

43       user_item_matrixTrain = np.zeros((n_users, n_items))  

44     

45       for line in fullDataSet.itertuples():  

46           user_item_matrixTrain[line[1] - 1, line[2] - 1] = line[3]  

47     
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48       values = np.zeros((n_items, 6))  

49     

50       for i in range(0,n_items):  

51           for u in range(0,n_users):  

52               for j in range(0,6):  

53                   if user_item_matrixTrain[u, i] == j:  

54                       values[i, j] += 1  

55     

56       voters = np.zeros((n_items))  

57     

58       for i in range(0,n_items):  

59           voters[i] = values[i,1] + values[i,2] + values[i,3] + 

values[i,4] + values[i,5]  

60     

61       prop = np.zeros((n_items, 6))  

62     

63       w = np.zeros(6)  

64       for i in range(0,6):  

65           if i == 0:  

66               w[i] = 0.5  

67           else:  

68               w[i] = 1  

69     

70       for i in range(0,n_items):  

71           prop[i, 0] = values[i, 0]/voters[i]  

72           prop[i, 1] = values[i, 1]/voters[i]  

73           prop[i, 2] = values[i, 2]/voters[i]  

74           prop[i, 3] = values[i, 3]/voters[i]  

75           prop[i, 4] = values[i, 4]/voters[i]  

76           prop[i, 5] = values[i, 5]/voters[i]  

77     

78       entropy = np.zeros((n_items))  

79       for i in range(0,n_items):  

80           entropy[i] = 0  

81           for rat in range(0,6):  

82               if prop[i,rat] != 0:  

83                   entropy[i] = entropy[i] + 

prop[i,rat]*w[rat]*math.log(prop[i,rat],2)  

84           entropy[i] = entropy[i]/5.5  

85     

86       entropy = -entropy  

87       entropy_indexes = [i for i in np.argsort(-entropy)]  

88       return entropy_indexes  

89   #----------------------------------------------------------------

------------------------------------------------------#  

90     

91     

92   

######################################################################

##################################################  

93   #insert new user by creating gui in python console  

94   def insertNewUserRatings(ids_titles, fullDataSet, newUserID, 

timestamp, known_positives, mySelMovies, entropy_indexes):  

95       i=0  

96       j=20  

97       f=0  

98       while(f < 10):  

99           userList = []  

100          for x in range(i,j):  

101              userList.append({x%20+1: ids_titles[entropy_in-

dexes[x]]})  
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102          print('\n')  

103          for p in userList:  

104              print(p)  

105          print('\n')  

106          while(True):  

107              try:  

108                  var = int(input("Choose a movie, or press -1 to 

change movieset: "))  

109              except ValueError:  

110                  print("Wrong input, please insert an integer")  

111                  continue  

112              if((var<-1 or var>20) and var ==0):  

113                  print("Value must be -1 OR between 1 and 20. 

Please insert a valid integer")  

114                  continue  

115              if(1<=var and 20>=var):  

116                  selMovie = str(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  

117                  if selMovie in mySelMovies:  

118                      print("You have already selected that movie, 

please choose another movie")  

119                      continue  

120                  mySelMovies.append(str(ids_titles.tolist().in-

dex(userList[var-1][var])+1))  

121              break  

122          if (var == -1):  

123              if ((1681 - j) >= 20):  

124                  i = j  

125                  j += 20  

126              elif ((1681 - j) > 0):  

127                  i = j  

128                  j = 1682  

129              else:  

130                  i = 0  

131                  j = 20  

132              continue  

133          else:  

134              print('\n')  

135              print("You selected the movie: " + userList[var-

1][var] + " with ID: " + str(ids_titles.tolist().index(userList[var-

1][var])+1))  

136              print('\n')  

137              while (True):  

138                  try:  

139                      rating = int(input("Rate the movie: "))  

140                  except ValueError:  

141                      print("Wrong input, please insert an inte-

ger")  

142                      continue  

143                  if (rating < 1 or rating > 5):  

144                      print("Value must be between 1 and 5. Please 

insert a valid integer")  

145                      continue  

146                  break  

147              known_positives.append(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  

148              fullDataSet.loc[len(fullDataSet)] = [newUserID, 

ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

149              f = f + 1  

150              while(f < 10):  
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151                  while (True):  

152                      try:  

153                          ch = int(input("To change the movieset 

press -1, to keep press 1: "))  

154                      except ValueError:  

155                          print("Wrong input, please insert an in-

teger")  

156                          continue  

157                      if (ch != 1 and ch != -1):  

158                          print("Value must be 1 or -1. Please in-

sert a valid integer")  

159                          continue  

160                      break  

161                  if(int(ch) == -1):  

162                      break  

163                  else:  

164                      print('\n')  

165                      for p in userList:  

166                          print(p)  

167                      print('\n')  

168                      while (True):  

169                          try:  

170                              var = int(input("Choose a movie: "))  

171                          except ValueError:  

172                              print("Wrong input, please insert an 

integer")  

173                              continue  

174                          if ((var < -1 or var > 20)):  

175                              print("Value must be between 1 and 

20. Please insert a valid integer")  

176                              continue  

177                          selMovie = str(ids_titles.tolist().in-

dex(userList[var - 1][var]) + 1)  

178                          if selMovie in mySelMovies:  

179                              print("You have already selected that 

movie, please choose another movie")  

180                              continue  

181                          mySelMovies.append(str(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1))  

182                          break  

183                      print('\n')  

184                      print("You selected the movie: " + us-

erList[var - 1][var] + " with ID: " + str(  

185                          ids_titles.tolist().index(userList[var - 

1][var]) + 1))  

186                      print('\n')  

187                      while (True):  

188                          try:  

189                              rating = int(input("Rate the movie: 

"))  

190                          except ValueError:  

191                              print("Wrong input, please insert an 

integer")  

192                              continue  

193                          if (rating < 1 or rating > 5):  

194                              print("Value must be between 1 and 5. 

Please insert a valid integer")  

195                              continue  

196                          break  

197                      known_positives.append(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1)  
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198                      fullDataSet.loc[len(fullDataSet)] = [newUse-

rID, ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

199                      f = f + 1  

200              if((1681-j) >= 20):  

201                  i = j  

202                  j += 20  

203              elif((1681-j) > 0):  

204                  i = j  

205                  j = 1682  

206              else:  

207                  i = 0  

208                  j = 20  

209          print('\n')  

210      return fullDataSet  

211  #----------------------------------------------------------------

------------------------------------------------------#  

212    

213    

214  

######################################################################

##################################################  

215  #we create user-item matrix  

216  def getUserItemMatrix(n_users, n_items, fullDataSet):  

217      user_item_matrix = np.zeros((n_users, n_items))  

218      for line in fullDataSet.itertuples():  

219          user_item_matrix[line[1] - 1, line[2] - 1] = line[3]  

220      return user_item_matrix  

221  #----------------------------------------------------------------

------------------------------------------------------#  

222    

223    

224  

######################################################################

##################################################  

225  #we use the pairwise_distances function from sklearn to calculate 

the pearson correlation  

226  def calculateUsersPearsonCorrelation(user_item_matrixTrain):  

227      user_similarityPearson = 1 - pairwise_distances(user_item_ma-

trixTrain, metric='correlation') #943*943  

228      user_similarityPearson[np.isnan(user_similarityPearson)] = 0  

229      return user_similarityPearson  

230  #----------------------------------------------------------------

------------------------------------------------------#  

231    

232    

233  

######################################################################

##################################################  

234  #make predictions combining Top-K neigbors and Bias-subtracted 

collaborative filtering  

235  def predict_Top_K_no_Bias(ratings, similarity, k=40):  

236      pred = np.zeros(ratings.shape)  

237      user_bias = ratings.mean(axis=1)  

238      ratings = (ratings - user_bias[:, np.newaxis]).copy()  

239      for i in range(ratings.shape[0]):  

240          top_K_users = [np.argsort(similarity[:,i])[:-k-1:-1]]  

241          for j in range(ratings.shape[1]):  

242              pred[i,j] = similarity[i, :][top_K_users].dot(rat-

ings[:, j][top_K_users])  
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243              pred[i,j] /= np.sum(np.abs(similarity[i, :][top_K_us-

ers]))  

244      pred += user_bias[:, np.newaxis]  

245      return pred  

246  #----------------------------------------------------------------

------------------------------------------------------#  

247    

248    

249    

250  

######################################################################

##################################################  

251  ##############################################BASIC 

SCRIPT##############################################################  

252    

253  newUserID = 944  # new user's id  

254  timestamp = '883446543'  # random timestamp, we dont care about 

that  

255  known_positives = []  

256  mySelMovies = []  

257    

258  #read the movieset  

259  ids_titles = readMovieSet('u.item')  

260  #read the full dataset  

261  fullDataSet = readFullDataset('u.data')  

262    

263  #calculate number of users and items  

264  n_users = numberOfUsers(fullDataSet)  

265  n_items = numberOfMovies(fullDataSet)  

266    

267  #calculate movies ratings entropy0 values and return movies in-

dexes with the highest entropy0 values to the lowest  

268  entropy_indexes = calcMoviesEntropy0(fullDataSet, n_users, 

n_items)  

269    

270  #insert new user  

271  fullDataSetNewUser = insertNewUserRatings(ids_titles, fullDa-

taSet, newUserID, timestamp, known_positives, mySelMovies, entropy_in-

dexes)  

272    

273  #calculate number of users and items with new user  

274  n_users = numberOfUsers(fullDataSetNewUser)  

275  n_items = numberOfMovies(fullDataSetNewUser)  

276    

277  #calculate user item matrix  

278  user_item_matrix = getUserItemMatrix(n_users, n_items, fullDa-

taSetNewUser)  

279    

280  #calculate user similarity(Pearson correlation)  

281  user_similarityPearson = calculateUsersPearsonCorrela-

tion(user_item_matrix)  

282    

283  #apply bias subtracted user-based collaborative filtering with 

Top-40 most common neigbors algorithm  

284  user_prediction_User = predict_Top_K_no_Bias(user_item_matrix, 

user_similarityPearson, k=40)  

285    

286  #function for printing the top n recommended movies for a given 

user id -  

287  def printPredictedMoviesUserBased(user, n):  

288      user = user - 1  



  -89- 

289      n = n - 1  

290      pred_indexes = [i + 1 for i in np.argsort(-user_predic-

tion_User[user])]  

291      pred_indexes = [item for item in pred_indexes if item not in 

known_positives]  

292      movies_ids_titles = pd.read_csv('u.item', sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'], 

usecols=[0, 1])  

293      pd_pred_indexes = pd.DataFrame(pred_indexes, columns=['item-

Id'])  

294      pred_movies = pd.merge(pd_pred_indexes, movies_ids_titles, 

on='itemId')  

295      print('\n')  

296      print("*******************user-based collaborative filtering 

(Top-K neigbors and Bias-subtracted)*******************************")  

297      print(pred_movies.loc[:n])  

298    

299  #print the top 10 recommended movies for the new User (id = 944)  

300  printPredictedMoviesUserBased(944, 10) 
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demographic_entropy0-based.py 

1    import zipfile  

2    from numpy import array  

3    import numpy as np  

4    import pandas as pd  

5    from sklearn.metrics.pairwise import pairwise_distances  

6    import math  

7      

8      

9      

10   

######################################################################

##################################################  

11   #fetch demographic data  

12   def _read_raw_data(path):  

13       with zipfile.ZipFile(path) as datafile:  

14           return datafile.read('ml-100k/u.user').decode(errors='ig-

nore').split('\n')  

15   #----------------------------------------------------------------

------------------------------------------------------#  

16     

17     

18   

######################################################################

##################################################  

19   # create the user_meta-data list  

20   def createUserMetaDataList(users_raw, users_age, users_occup, 

user_meta_raw):  

21       # first create the user_meta-data list by the existing da-

taset  

22       for line in users_raw:  

23           if not line:  

24               continue  

25           #print(line)  

26           splt = line.split('|')  

27           # Zero-based indexing  

28           userid = int(splt[0])  

29           age = int(splt[1])  

30           gender = splt[2]  

31           occup = splt[3]  

32           i = 0  

33           for m in users_age:  

34               if(age <= int(m)):  

35                   #print(i)  

36                   break  

37               else:  

38                   i = i + 1  

39     

40           if(gender == 'M'):  

41               j = 8  

42           else:  

43               j = 9  

44           k = 10  

45           for n in users_occup:  

46               if(occup == n):  

47                   #print(k)  

48                   break  

49               else:  

50                   k = k + 1  

51           s = str(userid) + "|"  

52           for l in range(0,31):  
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53              if(l == i or l == j or l == k):  

54                  s = s + "1|"  

55              else:  

56                  s = s + "0|"  

57           s = s[:-1]  

58           user_meta_raw.append(s)  

59       #then, append the new user to the above user_meta_data list  

60       while (True):  

61           try:  

62               print('Select your age range:\n', '1. <=18\n', '2. 

19-24\n', '3. 25-30\n', '4. 31-40\n', '5. 41-50\n',  

63                     '6. 51-60\n', '7. 61-70\n', '8. 71-100\n')  

64               newage = int(input("Choose the corresponding number: 

"))  

65           except ValueError:  

66               print("Wrong input, please insert an integer")  

67               continue  

68           if (newage < 1 or newage > 8):  

69               print("Value must be between 1 and 8. Please insert a 

valid integer")  

70               continue  

71           if (1 <= newage and 8 >= newage):  

72               newage = (newage) - 1  

73           break  

74     

75       while (True):  

76           try:  

77               print('Select your gender:\n', '1. Male\n', '2. Fe-

male\n')  

78               newgend = int(input("Choose the corresponding number: 

"))  

79           except ValueError:  

80               print("Wrong input, please insert an integer")  

81               continue  

82           if (newgend < 1 or newgend > 2):  

83               print("Value must be 1 or 2. Please insert a valid 

integer")  

84               continue  

85           if (1 == newgend or 2 == newgend):  

86               newgend = (newgend) - 1 + 8  

87           break  

88     

89       while (True):  

90           try:  

91               print('Select your occupation:\n', '1. administra-

tor\n', '2. artist\n', '3. doctor\n', '4. educator\n',  

92                     '5. engineer\n', '6. entertainer\n',  

93                     '7. executive\n', '8. healthcare\n', '9. home-

maker\n', '10. lawyer\n', '11. librarian\n',  

94                     '12. marketing\n', '13. none\n', '14. other\n',  

95                     '15. programmer\n', '16. retired\n', '17. 

salesman\n', '18. scientist\n', '19. student\n',  

96                     '20. technician\n', '21. writer\n')  

97               newoccup = int(input("Choose the corresponding num-

ber: "))  

98           except ValueError:  

99               print("Wrong input, please insert an integer")  

100              continue  

101          if (newoccup < 1 or newoccup > 21):  

102              print("Value must be between 1 and 21. Please insert 

a valid integer")  
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103              continue  

104          if (1 <= newoccup and 21 >= newoccup):  

105              newoccup = (newoccup) - 1 + 10  

106          break  

107    

108      s = str(944) + "|"  

109      for l in range(0, 31):  

110          if (l == newage or l == newgend or l == newoccup):  

111              s = s + "1|"  

112          else:  

113              s = s + "0|"  

114      s = s[:-1]  

115      user_meta_raw.append(s)  

116      return user_meta_raw  

117  #----------------------------------------------------------------

------------------------------------------------------#  

118    

119    

120  

######################################################################

##################################################  

121  #transform users metadata to a list with zeros and ones  

122  def _parse_user_metadata(num_users, user_meta_raw, users_com-

bined_features):  

123      user_features = np.zeros((num_users, len(users_combined_fea-

tures)))  

124      for meta in user_meta_raw:  

125          if not meta:  

126              continue  

127          splt = meta.split('|')  

128          # Zero-based indexing  

129          iid = int(splt[0]) - 1  

130          item_meta = [idx for idx, val in  

131                       enumerate(splt[1:])  

132                       if int(val) > 0]  

133          for gid in item_meta:  

134              user_features[iid, gid] = 1.0  

135      return user_features  

136  #----------------------------------------------------------------

------------------------------------------------------#  

137    

138    

139  

######################################################################

##################################################  

140  #calculate the euclidean distance of users and then find the 

k(k=20) most common neigbors based on demographics  

141  def euclideanDistance(instance1, instance2, length):  

142      distance = 0  

143      for x in range(length):  

144          distance += pow((instance1[x] - instance2[x]), 2)  

145      return math.sqrt(distance)  

146    

147  def getNeighbors(trainingSet, testInstance, k):  

148      distances = []  

149      length = len(testInstance)  

150      for x in range(len(trainingSet)):  

151          dist = euclideanDistance(testInstance, trainingSet[x], 

length)  

152          distances.append(dist)  

153      a = array(distances)  
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154      sorted_indexes = np.argsort(a)  

155      index_neighbors = sorted_indexes[:k]  

156      return index_neighbors  

157  #----------------------------------------------------------------

------------------------------------------------------#  

158    

159    

160  

######################################################################

##################################################  

161  #We read in the u.data file, which contains the full dataset.  

162  def readFullDataset(dataSetFilePath):  

163      header = ['user_id', 'item_id', 'rating', 'timestamp']  

164      return pd.read_csv(dataSetFilePath, sep='\t', names=header)  

165  #----------------------------------------------------------------

------------------------------------------------------#  

166    

167    

168  

######################################################################

##################################################  

169  #we read the the movies titles from the movie dataset  

170  def readMovieSet(movieSetFilePath):  

171      df_ids_titles = pd.read_csv(movieSetFilePath, sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'],usecols=[0, 

1])  

172      ids_titles = np.empty(1682, dtype=np.object)  

173      for line in df_ids_titles.itertuples():  

174          ids_titles[line[0]] = line[2]  

175      return ids_titles  

176  #----------------------------------------------------------------

------------------------------------------------------#  

177    

178    

179  

######################################################################

##################################################  

180  #we count the number of unique users and movies.  

181  def numberOfUsers(fullDataSet):  

182      n_users = fullDataSet.user_id.unique().shape[0]  

183      return n_users  

184    

185  def numberOfMovies(fullDataSet):  

186      n_items = fullDataSet.item_id.unique().shape[0]  

187      return n_items  

188  #----------------------------------------------------------------

------------------------------------------------------#  

189    

190    

191    

192  

######################################################################

##################################################  

193  #calculate existing movies entropy0 values  

194  def calcMoviesEntropy0(fullDataSet, n_users, n_items, neighbors):  

195    

196      user_item_matrixTrain = np.zeros((n_users, n_items))  

197    

198      for line in fullDataSet.itertuples():  

199          if line[1] - 1 in neighbors:  
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200              user_item_matrixTrain[line[1] - 1, line[2] - 1] = 

line[3]  

201    

202      values = np.zeros((n_items, 6))  

203    

204      for i in range(0,n_items):  

205          for u in range(0,n_users):  

206              for j in range(0,6):  

207                  if user_item_matrixTrain[u, i] == j:  

208                      values[i, j] += 1  

209    

210      voters = np.zeros((n_items))  

211    

212      for i in range(0,n_items):  

213          voters[i] = values[i,1] + values[i,2] + values[i,3] + 

values[i,4] + values[i,5]  

214    

215      prop = np.zeros((n_items, 6))  

216    

217      w = np.zeros(6)  

218      for i in range(0,6):  

219          if i == 0:  

220              w[i] = 0.5  

221          else:  

222              w[i] = 1  

223    

224      for i in range(0,n_items):  

225          if voters[i] !=0:  

226              prop[i, 0] = values[i, 0]/voters[i]  

227              prop[i, 1] = values[i, 1]/voters[i]  

228              prop[i, 2] = values[i, 2]/voters[i]  

229              prop[i, 3] = values[i, 3]/voters[i]  

230              prop[i, 4] = values[i, 4]/voters[i]  

231              prop[i, 5] = values[i, 5]/voters[i]  

232    

233      entropy = np.zeros((n_items))  

234      for i in range(0,n_items):  

235          entropy[i] = 0  

236          for rat in range(0,6):  

237              if prop[i,rat] != 0:  

238                  entropy[i] = entropy[i] + 

prop[i,rat]*w[rat]*math.log(prop[i,rat],2)  

239          entropy[i] = entropy[i]/5.5  

240    

241      entropy = -entropy  

242      entropy_indexes = [i for i in np.argsort(-entropy)]  

243      return entropy_indexes  

244  #----------------------------------------------------------------

------------------------------------------------------#  

245    

246    

247  

######################################################################

##################################################  

248  #insert new user by creating gui in python console  

249  def insertNewUserRatings(ids_titles, fullDataSet, newUserID, 

timestamp, known_positives, mySelMovies, entropy_indexes):  

250      i=0  

251      j=20  

252      f=0  

253      while(f < 10):  
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254          userList = []  

255          for x in range(i,j):  

256              userList.append({x%20+1: ids_titles[entropy_in-

dexes[x]]})  

257          print('\n')  

258          for p in userList:  

259              print(p)  

260          print('\n')  

261          while(True):  

262              try:  

263                  var = int(input("Choose a movie, or press -1 to 

change movieset: "))  

264              except ValueError:  

265                  print("Wrong input, please insert an integer")  

266                  continue  

267              if((var<-1 or var>20) and var ==0):  

268                  print("Value must be -1 OR between 1 and 20. 

Please insert a valid integer")  

269                  continue  

270              if(1<=var and 20>=var):  

271                  selMovie = str(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  

272                  if selMovie in mySelMovies:  

273                      print("You have already selected that movie, 

please choose another movie")  

274                      continue  

275                  mySelMovies.append(str(ids_titles.tolist().in-

dex(userList[var-1][var])+1))  

276              break  

277          if (var == -1):  

278              if ((1681 - j) >= 20):  

279                  i = j  

280                  j += 20  

281              elif ((1681 - j) > 0):  

282                  i = j  

283                  j = 1682  

284              else:  

285                  i = 0  

286                  j = 20  

287              continue  

288          else:  

289              print('\n')  

290              print("You selected the movie: " + userList[var-

1][var] + " with ID: " + str(ids_titles.tolist().index(userList[var-

1][var])+1))  

291              print('\n')  

292              while (True):  

293                  try:  

294                      rating = int(input("Rate the movie: "))  

295                  except ValueError:  

296                      print("Wrong input, please insert an inte-

ger")  

297                      continue  

298                  if (rating < 1 or rating > 5):  

299                      print("Value must be between 1 and 5. Please 

insert a valid integer")  

300                      continue  

301                  break  

302              known_positives.append(ids_titles.tolist().index(us-

erList[var - 1][var]) + 1)  
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303              fullDataSet.loc[len(fullDataSet)] = [newUserID, 

ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

304              f = f + 1  

305              while(f < 10):  

306                  while (True):  

307                      try:  

308                          ch = int(input("To change the movieset 

press -1, to keep press 1: "))  

309                      except ValueError:  

310                          print("Wrong input, please insert an in-

teger")  

311                          continue  

312                      if (ch != 1 and ch != -1):  

313                          print("Value must be 1 or -1. Please in-

sert a valid integer")  

314                          continue  

315                      break  

316                  if(int(ch) == -1):  

317                      break  

318                  else:  

319                      print('\n')  

320                      for p in userList:  

321                          print(p)  

322                      print('\n')  

323                      while (True):  

324                          try:  

325                              var = int(input("Choose a movie: "))  

326                          except ValueError:  

327                              print("Wrong input, please insert an 

integer")  

328                              continue  

329                          if ((var < -1 or var > 20)):  

330                              print("Value must be between 1 and 

20. Please insert a valid integer")  

331                              continue  

332                          selMovie = str(ids_titles.tolist().in-

dex(userList[var - 1][var]) + 1)  

333                          if selMovie in mySelMovies:  

334                              print("You have already selected that 

movie, please choose another movie")  

335                              continue  

336                          mySelMovies.append(str(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1))  

337                          break  

338                      print('\n')  

339                      print("You selected the movie: " + us-

erList[var - 1][var] + " with ID: " + str(  

340                          ids_titles.tolist().index(userList[var - 

1][var]) + 1))  

341                      print('\n')  

342                      while (True):  

343                          try:  

344                              rating = int(input("Rate the movie: 

"))  

345                          except ValueError:  

346                              print("Wrong input, please insert an 

integer")  

347                              continue  

348                          if (rating < 1 or rating > 5):  



  -97- 

349                              print("Value must be between 1 and 5. 

Please insert a valid integer")  

350                              continue  

351                          break  

352                      known_positives.append(ids_ti-

tles.tolist().index(userList[var - 1][var]) + 1)  

353                      fullDataSet.loc[len(fullDataSet)] = [newUse-

rID, ids_titles.tolist().index(userList[var - 1][var]) + 1, rating, 

timestamp]  

354                      f = f + 1  

355              if((1681-j) >= 20):  

356                  i = j  

357                  j += 20  

358              elif((1681-j) > 0):  

359                  i = j  

360                  j = 1682  

361              else:  

362                  i = 0  

363                  j = 20  

364          print('\n')  

365      return fullDataSet  

366  #----------------------------------------------------------------

------------------------------------------------------#  

367    

368    

369  

######################################################################

##################################################  

370  #we create user-item matrix  

371  def getUserItemMatrix(n_users, n_items, fullDataSet):  

372      user_item_matrix = np.zeros((n_users, n_items))  

373      for line in fullDataSet.itertuples():  

374          user_item_matrix[line[1] - 1, line[2] - 1] = line[3]  

375      return user_item_matrix  

376  #----------------------------------------------------------------

------------------------------------------------------#  

377    

378    

379  

######################################################################

##################################################  

380  #we use the pairwise_distances function from sklearn to calculate 

the pearson correlation  

381  def calculateUsersPearsonCorrelation(user_item_matrixTrain):  

382      user_similarityPearson = 1 - pairwise_distances(user_item_ma-

trixTrain, metric='correlation') #943*943  

383      user_similarityPearson[np.isnan(user_similarityPearson)] = 0  

384      return user_similarityPearson  

385  #----------------------------------------------------------------

------------------------------------------------------#  

386    

387    

388  

######################################################################

##################################################  

389  #make predictions combining Top-K neigbors and Bias-subtracted 

collaborative filtering  

390  def predict_Top_K_no_Bias(ratings, similarity, k=40):  

391      pred = np.zeros(ratings.shape)  

392      user_bias = ratings.mean(axis=1)  

393      ratings = (ratings - user_bias[:, np.newaxis]).copy()  
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394      for i in range(ratings.shape[0]):  

395          top_K_users = [np.argsort(similarity[:,i])[:-k-1:-1]]  

396          for j in range(ratings.shape[1]):  

397              pred[i,j] = similarity[i, :][top_K_users].dot(rat-

ings[:, j][top_K_users])  

398              pred[i,j] /= np.sum(np.abs(similarity[i, :][top_K_us-

ers]))  

399      pred += user_bias[:, np.newaxis]  

400      return pred  

401  #----------------------------------------------------------------

------------------------------------------------------#  

402    

403    

404    

405  

######################################################################

##################################################  

406  ##############################################BASIC 

SCRIPT##############################################################  

407    

408  newUserID = 944  # new user's id  

409  timestamp = '883446543'  # random timestamp, we dont care about 

that  

410  known_positives = []  

411  mySelMovies = []  

412    

413  #fetch dempgraphic data  

414  users_raw = _read_raw_data("C:/Users/Sak/lightfm_data/mov-

ielens100k/movielens.zip")  

415    

416  #create models  

417  users_age = ['18', '24', '30', '40', '50', '61', '70', '100']  

418  users_occup = ['administrator', 'artist', 'doctor', 'educator',  

419                                    'engineer', 'entertainer', 'ex-

ecutive', 'healthcare', 'homemaker',  

420                                    'lawyer', 'librarian', 'market-

ing', 'none', 'other', 'programmer',  

421                                    'retired', 'salesman', 'scien-

tist', 'student', 'technician',  

422                                    'writer']  

423    

424  users_combined_features = ['18|0', '24|1', '30|2', '40|3', 

'50|4', '61|5', '70|6',  

425                                    '100|7', 'm|8', 'f|9', 'admin-

istrator|10', 'artist|11', 'doctor|12', 'educator|13',  

426                                    'engineer|14', 'enter-

tainer|15', 'executive|16', 'healthcare|17', 'homemaker|18',  

427                                    'lawyer|19', 'librarian|20', 

'marketing|21', 'none|22', 'other|23', 'programmer|24',  

428                                    'retired|25', 'salesman|26', 

'scientist|27', 'student|28', 'technician|29',  

429                                    'writer|30']  

430    

431  user_meta_raw = []  

432    

433  user_meta_raw = createUserMetaDataList(users_raw, users_age, us-

ers_occup, user_meta_raw)  

434    

435    

436  #users demographic data with new user  
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437  usr_feat = _parse_user_metadata(944, user_meta_raw, users_com-

bined_features)  

438  #users demographic data without the new user  

439  usr_feat_no_newUser = np.delete(usr_feat, (943), axis=0)  

440  #new user demographic data  

441  new_usr_feat = usr_feat[-1]  

442    

443  ##The 20 most common neighbors for the new user based on de-

mographics are:  

444  neighbors = getNeighbors(usr_feat_no_newUser, new_usr_feat, 10)  

445    

446  #read the movieset  

447  ids_titles = readMovieSet('u.item')  

448  #read the full dataset  

449  fullDataSet = readFullDataset('u.data')  

450    

451  #calculate number of users and items  

452  n_users = numberOfUsers(fullDataSet)  

453  n_items = numberOfMovies(fullDataSet)  

454    

455    

456  #calculate only neigbors movies ratings entropy0 values and re-

turn movies indexes with the highest entropy0 values to the lowest  

457  entropy_indexes = calcMoviesEntropy0(fullDataSet, n_users, 

n_items, neighbors)  

458    

459  #insert new user  

460  fullDataSetNewUser = insertNewUserRatings(ids_titles, fullDa-

taSet, newUserID, timestamp, known_positives, mySelMovies, entropy_in-

dexes)  

461    

462  #calculate number of users and items with new user  

463  n_users = numberOfUsers(fullDataSetNewUser)  

464  n_items = numberOfMovies(fullDataSetNewUser)  

465    

466  #calculate user item matrix  

467  user_item_matrix = getUserItemMatrix(n_users, n_items, fullDa-

taSetNewUser)  

468    

469  #calculate user similarity(Pearson correlation)  

470  user_similarityPearson = calculateUsersPearsonCorrela-

tion(user_item_matrix)  

471    

472  #apply bias subtracted user-based collaborative filtering with 

Top-40 most common neigbors algorithm  

473  user_prediction_User = predict_Top_K_no_Bias(user_item_matrix, 

user_similarityPearson, k=40)  

474    

475  #function for printing the top n recommended movies for a given 

user id -  

476  def printPredictedMoviesUserBased(user, n):  

477      user = user - 1  

478      n = n - 1  

479      pred_indexes = [i + 1 for i in np.argsort(-user_predic-

tion_User[user])]  

480      pred_indexes = [item for item in pred_indexes if item not in 

known_positives]  

481      movies_ids_titles = pd.read_csv('u.item', sep="|", 

header=None, encoding='latin-1', names=['itemId', 'title'], 

usecols=[0, 1])  



-100- 

482      pd_pred_indexes = pd.DataFrame(pred_indexes, columns=['item-

Id'])  

483      pred_movies = pd.merge(pd_pred_indexes, movies_ids_titles, 

on='itemId')  

484      print('\n')  

485      print("*******************user-based collaborative filtering 

(Top-K neigbors and Bias-subtracted)*******************************")  

486      print(pred_movies.loc[:n])  

487    

488  #print the top 10 recommended movies for the new User (id = 944)  

489  printPredictedMoviesUserBased(944, 10)  

 


